《结构力学习题集》(下)-结构的动力计算习题及答案_第1页
《结构力学习题集》(下)-结构的动力计算习题及答案_第2页
《结构力学习题集》(下)-结构的动力计算习题及答案_第3页
《结构力学习题集》(下)-结构的动力计算习题及答案_第4页
《结构力学习题集》(下)-结构的动力计算习题及答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《结构力学》习题集(下册)第九章结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。2、仅在恢复力作用下的振动称为自由振动。3、单自由度体系其它参数不变,只有刚度EI增大到原来的2倍,则周期比原来的周期减小1/2。4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。5、图示刚架不计分布质量和直杆轴向变形,图a刚架的振动自由度为2,图b刚架的振动自由度也为2。6、图示组合结构,不计杆件的质量,其动力自由度为5个。7、忽略直杆的轴向变形,图示结构的动力自由度为4个。8、由于阻尼的存在,任何振动都不会长期继续下去。9、设ω,ωD分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD的关系为ω=ωD。——16——《结构力学》习题集(下册)二、计算题:10、图示梁自重不计,求自振频率ω。11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k,求自振频率ω。12、求图示体系的自振频率ω。13、求图示体系的自振频率ω。EI=常数。14、求图示结构的自振频率ω。——17——《结构力学》习题集(下册)15、求图示体系的自振频率ω。EI=常数,杆长均为l。16、求图示体系的自振频率ω。杆长均为l。17、求图示结构的自振频率和振型。l/4218、图示梁自重不计,W=200kN,EI=2⨯10kN⋅m,求自振圆频率ω。B19、图示排架重量W集中于横梁上,横梁EA=∞,求自振周期ω。WEIEI——18——《结构力学》习题集(下册)20、图示刚架横梁EI=∞且重量W集中于横梁上。求自振周期T。WEI2EIEI21、求图示体系的自振频率ω。各杆EI=常数。a22、图示两种支承情况的梁,不计梁的自重。求图a与图b的自振频率之比。(a)(b)23、图示桁架在结点C中有集中重量W,各杆EA相同,杆重不计。求水平自振周期T。24、忽略质点m的水平位移,求图示桁架竖向振动时的自振频率ω。各杆EA=常数。m——19——《结构力学》习题集(下册)42-1425、图示体系E=2⨯10kN/cm,θ=20s,P=5kN,W=20kN,I=4800cm。求质点处最大动位移和最大动弯矩。Psinθt52-15326、图示体系EI=2⨯10kN⋅m,θ=20s,k=3×10N/m,P=5×10N。W=10kN。求质点处最大动位移和最大动弯矩。27、求图示体系在初位移等于l/1000,初速度等于零时的解答。θ=0.20ω(ω为自振频率),不计阻尼。28、图示体系受动力荷载作用,不考虑阻尼,杆重不计,求发生共振时干扰力的频率θ。Psin()t/3——20——《结构力学》习题集(下册)29、已知:m=3t,P=8kN,干扰力转速为150r/min,不计杆件的质量,EI=6⨯103kN⋅m2。求质点的最大动力位移。30、图示体系中,电机重W=10kN置于刚性横梁上,电机转速n=500r/min,水平方向干扰力为P(t)=2kN⋅sin(θt),已知柱顶侧移刚度k=1.02⨯10kN/m,自振-1频率ω=100s。求稳态振动的振幅及最大动力弯矩图。4m31、图示体系中,W=10kN,质点所在点竖向柔度δ=1.917,马达动荷载P(t)=4kNsin(θt),马达转速n=600r/min。求质点振幅与最大位移。-132、图示体系中,W=8kN,自振频率ω=100s,电机荷载P(t)=5kN·sin(θt),电机转速n=550r/min。求梁的最大与最小弯矩图。P(t)——21——《结构力学》习题集(下册)33、求图示体系支座弯矩MA的最大值。荷载P(t)=P0sinθt,θ=0.4ω。/2/234、求图示体系的运动方程。m35、求图示体系稳态阶段动力弯矩幅值图。θ=0.5ω(ω为自振频率),EI=常数,不计阻尼。36、图示体系分布质量不计,EI=常数。求自振频率。37、图示简支梁EI=常数,梁重不计,m1=2m,m2=m,已求出柔度系数δ12=7a3/(18EI)。求自振频率及主振型。——22——《结构力学》习题集(下册)38、求图示梁的自振频率及主振型,并画主振型图。杆件分布质量不计。39、图示刚架杆自重不计,各杆EI=常数。求自振频率。40、求图示体系的自振频率和主振型。EI=常数。41、求图示体系的自振频率及主振型。EI=常数。42、求图示体系的自振频率及相应主振型。EI=常数。l——23——《结构力学》习题集(下册)43、求图示结构的自振频率和主振型。不计自重。44、求图示体系的自振频率和主振型。不计自重,EI=常数。m45、求图示体系的第一自振频率。46、求图示体系的自振频率。已知:m1=m2=m。EI=常数。47、求图示体系的自振频率和主振型,并作出主振型图。已知:m1=m2=m,EI=常数。248、求图示对称体系的自振频率。EI=常数。——24——《结构力学》习题集(下册)49、图示对称刚架质量集中于刚性横粱上,已知:m1=m,m2=2m。各横梁的层间侧移刚度均为k。求自振频率及主振型。m22m1150、求图示体系的自振频率并画出主振型图。m51、求图示体系的自振频率和主振型。EI=常数。52、用最简单方法求图示结构的自振频率和主振型。——25——《结构力学》习题集(下册)53、求图示体系的频率方程。54、求图示体系的自振频率和主振型。EI=常数。2a55、求图示体系的自振频率和主振型。不计自重,EI=常数。56、求图示体系的自振频率。设EI=常数。57、图示体系,设质量分别集中于各层横梁上,数值均为m。求第一与第二自振频率之比ω1:ω2。2ll——26——《结构力学》习题集(下册)58、求图示体系的自振频率和主振型。EI=∞EI12EI=∞2EI12EI1EI159、求图示体系的自振频率和主振型。m1=m,m2=2m。60、求图示桁架的自振频率。杆件自重不计。m61、求图示桁架的自振频率。不计杆件自重,EA=常数。m——27——《结构力学》习题集(下册)62、作出图示体系的动力弯矩图,已知:θ=0.82567EI。ml3m263、作图示体系的动力弯矩图。柱高均为h,柱刚度EI=常数。P.θ=EImh-164、绘出图示体系的最大动力弯矩图。已知:动荷载幅值P=10kN,θ=20.944s,62质量m=500kg,a=2m,EI=4.8⨯10N⋅m。Psin(θt)65、已知图示体系的第一振型如下,求体系的第一频率。EI=常数。/2.⎧01618⎫⎪⎪振型1⎨0.5401⎬⎪1⎪⎩⎭第九章结构的动力计算(参考答案)——28——《结构力学》习题集(下册)1、(X)2、(X)3、(X)4、(X)5、(O)6、(O)7、(O)8、(X)9、(X)10、ω=EIg/5Wl11、ω=12、δ1113、δ14、34kg/W=3l3/48EI,ω2=16EI/(ml3)=5l3/48EI,ω2=48EI/(5ml3)ω=24EIEI=1.11ml3ml315、δ=5l3/3EI,ω2=3EI/(5ml3)=9EI/l3,ω2=9EIml316、k1117、ω1=1.5EI,24EI-4mω2l3A1-6mω2l3A2=0,3ml()ω2=4.EI2323,3mωlA+(8mωl-24EI)A2=013ml振型1振型218、ω=54.2s-119、T=2πWh3/6EIg——29——《结构力学》习题集(下册)20、T=2π21、ωWh3/48EIg=2.889EI/(ma3)22、ωa23、T24、ω:ωb=1:2=16.(W/EAg)=/mδ=EA/10.5mω=(EI/8ml/2)=24.25s-1,μ=1/(1-θ2/ω2)=3.127,25、MDmax=μMstp,YMax=μYstp=1.3029cm.s-1μ=1/(1-θ2/ω2)=1.52226、ω=/m=/m(4/3EI+1/4k)=341627、YDmax=μystp=0.006m,,MDmax=μMstp=7.61kNm,PμDcos(θt),mω2Yst=P/mω2,μD=1.04067,Y=Asin(ωt)+Bcos(ωt)+A=YμstDθ,B=l/1000,ωY=0.001lcos(ωt)-0.20833Ystsin(ωt)+1.04167Ystsin(θt),27EI/(ml3)28、θ=29、ω30、θ=38.92s-1,θ=15.71s-1,μ=1.19,ymax=2.09/103m=52.36s-1,β=1.378,,yst=1.9610-4m,A=βyst=0.27mmMD=βFM=2.756M31、ω=71.50s-1,θ=62.83s-1,;β=4.389;A=βFδ=3.37mm;ymax=(w+βF)δ=5.28mm-132、θ=57.596s,β=1.496,MD=βFM=7.48M,——30——《结构力学》习题集(下册)Mmax=Mst+MD={15.480.52}MT33、ω=3EI3EI,,k=ml3l35P16m运动方程:m+ky=k⋅∆1P,+ω2y=yy特征解y:*y*=5P016mω21θ21-2ωsinθt=0.0595P0sinθtmMA=m*l+yPlPl=(0.0595P0l+0)sinθt=0.56P0lsinθt,(MA)max=0.56P0l2234、35、+my3EI5Psin(θt)y=16l3-Pl(sit(θt))3EIYst=Pl3/4EI,μ=4/3,Y=36、λ13Plω1=0.558(EI/ma3),ω2=2.874(EI/ma3)ω1=0.8909(EI/ma3),ω2=3.6886|(EI/ma3)Y11/Y21=1/0.954,Y12/Y22=1/(-2.097)38、δ11=δ22=2a3/3EI,δ12=a3/6EI,——31——《结构力学》习题集(下册)ω1=1.0954(EI/ma3),ω2=1.414(EI/ma3)23λ=1/ω=ma5/61/2{}T/EI,Y11/Y21=1/1,Y12/Y22=1/(-1)11图1112图1第一主振型第二主振型39、δ11=482λ=1=m⎧8.554⎫,δ22=,δ12=-⎨⎬ω2EI⎩0.779⎭3EIEIEI,EIEI,ω2=1.mmω1=0.40、对称:δ=5l3/162EI,ω1=5.69(EI/ml3)1/2,=0.00198l3/EI,ω2=22.46(EI/ml3)1/2,反对称:δ41、δ11=5l3/48EI,δ22=l3/24EI,δ12=δ21=5l3/96EI33ω=2.EI/ml,ω=9.EI/ml12{Φ1}=[1{Φ2}=[10.565],(3分)T.](3分)-1766T42、对称:δ11=5l3/24EI,ω2=2.191(EI/ml3)1/2,——32——《结构力学》习题集(下册)333反对称:δ11=4l/EI,δ21=δ12=l/8EI,δ22=l/48EI,ω1=0.5(EI/ml3)1/2,ω2=7.69(EI/ml),31/2Y1=10.03-0.03,Y2=011,,Y3=1-31.8631.86{}[]T{}[]T{}[]T.43、ω1=12EIEI,ω=8.2,2ml3ml3l32l3l344、λ1⎡1.07⎤3ω1⎡0.97⎤=⎢ma/EI;=⎢EI/ma3⎥⎥λ2⎣0.0975ω2⎣3.2⎦⎦(1)(2)A1(1)/A2=-0.28;A1(2)/A2=+3.6145、ω46、=48EI/ml3δ11=4.5/(EI),δ22=1/(EI),δ12=δ21=-1.6875/(EI),λ=5.1818m/(EI),λ2=0.3189m/(EI),1ω1=0.(EI)/m,ω2=1.EI/m),47、δ11=14/(3EI),δ12=δ21=-4/(EI),δ22=32/(3EI)λ1=12.6645m/(EI),λ2=2.6664m/(EI)ω1=0.281(EI/m),ω2=0.6124EI/m)Φ11:Φ21=1:-2,Φ12:Φ22=1:0.548、ω1=10.EI/ml3,ω2=13.EI/ml3,49、k11=2k,k22=k,k12=k21=-k——33——《结构力学》习题集(下册)2ω=k⎧2.2808⎫kk,ω2=15102.⎨⎬,ω1=0.4682m⎩0.2192⎭mmY121=Y22-0.281Y111=,Y211781.22250、k11=6i/l,k21=k12=-6i/l,k22=30i/l,.(EI/m)1/2,ω2ω1=0146=0.381(EI/ml)1/2,{Φ1}=[]T,{Φ2}=[1-4.24]T10.23633351、k11=18EI/l,k12=-12EI/l,k22=99EI/8l,ω1=1692.EIEI,ω=5.2452ml3ml3l3=,ω1=6EI6EIEI=2.45,3mlml396EIEI=3.737mlml352、利用对称性:反对称:δ11对称:δ1153、列幅值方程:l3=,ω2=96EIδ112mω2x+δ122mω2y=x⎫2mω2δ11-1δ12mω2=0,⎬,δ212mω2x+δ222mω2y=y⎭2mω2δ21δ11mω2-δ11l3l34l3=,δ12=δ21=,δ22=3EI2EI3EI222254、对称:δ22反对称:δ1155、对称:——34——a3EI=01833.,ω2=3.3032EIma34a3EI=,ω1=0.7071EIma3《结构力学》习题集(下册)反对称:1133δ11=7a/(768EI),ω1=768EI/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论