版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
忆一忆1、全等三角形的对应边
---------,,对应角-----------相等相等2、判定三角形全等的方法有:SAS、ASA、AAS、SSS直角边直角边斜边认识直角三角形Rt△ABCSSA,AAA没有ACB
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们全等吗?ABCC′NM
ABCA′B′作法:(1)画∠MC'N=90°;(2)在射线C'M上截取B'C'=BC;(3)以点B'为圆心,AB为半径画弧,交射线C'N于点A';(4)连接A'B'.想一想:从中你能发现什么规律?斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”前提“斜边、直角边”判定方法斜边、直角边公理(HL)ABCA′B′C′
斜边和一条直角边对应相等的两个直角三角形全等.几何语言∴在Rt△ABC和Rt△A′B′C′
中,∴Rt△ABC
≌Rt△A′B′C′(HL).∵∠C=∠C′=90°,AB=A′B′,BC=B′C′,
例1
如图,AC⊥BC,BD⊥AD,AC﹦BD,求证:BC﹦AD.证明:
∵AC⊥BC,BD⊥AD,
∴∠C与∠D都是直角.
AB=BA,
AC=BD
.在Rt△ABC
和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL).∴BC﹦AD(全等三角形的对应边相等).ABDC应用“HL”的前提条件是在直角三角形中.这是应用“HL”判定方法的书写格式.利用全等证明两条线段相等,这是常见的思路.例2已知:如图,△ABC中,AB=AC,AD是高,求证:BD=CD;∠BAD=∠CADABCD证明:∵AD是高∴∠ADB=∠ADC=90°在Rt△ADB和Rt△ADC中AB=ACAD=AD∴Rt△ADB≌Rt△ADC(HL)∴BD=CD,∠BAD=∠CAD点拨:此类问题将证明线段和角相等转化为证三角形全等例3
如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.当堂练习1.如图,∠B=∠D=90°,要证明△ABC
与△ADC全等,还需要补充的一个条件是
(写出一个即可).③∠BAC=∠DAC
④∠ACB=∠ACD
一定要注意直角三角形不是只能用HL证明全等,但HL只能用于证明直角三角形的全等.注意CABD①
AB=AD
②BC=DCHLAAS2.如图在△ABC中,已知BD⊥AC,CE⊥AB,BD=CE.求证:△EBC≌△DCB.ABCED证明:∵BD⊥AC,CE⊥AB,
∴∠BEC=∠BDC=90°.在Rt△EBC
和Rt△DCB
中,
CE=BD,
BC=CB
.∴Rt△EBC≌Rt△DCB(HL).AFCEDB3.如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF求证:BF=DE.在Rt△ABF和Rt△CDE
AB=CD,
AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.证明:∵BF⊥AC,DE⊥AC,
∴∠BFA=∠DEC=90°∵AE=CF,∴AE+EF=CF+EF.即AF=CE.课堂小结1“斜边、直角边”内容斜边和一条直角边对应相等的两个直角三角形全等.前提条件在直角三角形中使用方法
只须找除直角外的两个条件即可(两个条件中至少有一个条件是一对对应边相等)直角三角形全等的判定一般三角形全等的判定“SAS”“ASA”“AAS”“SSS”“SAS”“ASA”“AAS”“
HL”灵活运用各种方法证明直角三角形全等“SSS”课堂小结2已知:如图,在△ABC和△DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,∠BAC=∠EDF,求证:△ABC≌△DEFABCPDEFQ能力提升ABCPDEFQ证明:∵AP、DQ是△ABC和△DEF的高∴∠APB=∠DQE=90°在Rt△ABP和Rt△DEQ中AB=DEAP=DQ∴Rt△ABP≌Rt△DEQ(HL)∴∠B=∠E在△ABC和△DEF中∠BAC=∠EDFAB=DE∠B=∠E∴△ABC≌△DEF(ASA)如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF.求证:BD平分EF.AFCEDBG变式训练1
AB=CD,
AF=CE.Rt△ABF≌Rt△CDE(HL).BF=DERt△GBF≌Rt△GDE(AAS).∠BFG=∠DEG∠BGF=∠DGEFG=EGBD平分EF如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF.想想:BD平分EF吗?变式训练2C
AB=CD,
AF=CE.Rt△ABF≌Rt△CDE(HL).BF=DERt△GBF≌Rt△GDE(AAS).∠BFG=∠DEG∠BGF=∠DGEFG=EGBD平分EF如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?【分析】本题要分情况讨论:(1)Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.(2)Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;能力拓展(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度国际文化交流项目志愿者聘用合同
- 2025版民宿民宿餐饮服务合同示范4篇
- 2025年度房地产公司股权转让与市场推广合同
- 2025年度个人车位租赁服务合同范本2篇
- 2025年度沐足行业员工劳动合同模板(含保密协议)4篇
- 林绵绵《韩娱离婚协议》2025年度网络剧改编权转让合同8篇
- 二零二五年度个人现金借款合同标准版2篇
- 二零二五年度农产品品牌授权使用合同8篇
- 二零二五年度农家乐乡村旅游扶贫项目合作合同4篇
- 二零二五年度文化旅游产业投资借款合同大全4篇
- 2022年中国电信维护岗位认证动力专业考试题库大全-上(单选、多选题)
- 纪委办案安全培训课件
- 超市连锁行业招商策划
- 医药高等数学智慧树知到课后章节答案2023年下浙江中医药大学
- 城市道路智慧路灯项目 投标方案(技术标)
- 初中英语-Unit2 My dream job(writing)教学设计学情分析教材分析课后反思
- 【公司利润质量研究国内外文献综述3400字】
- 工行全国地区码
- 新疆2022年中考物理试卷及答案
- 地暖工程监理实施细则
- 顶部板式吊耳计算HGT-20574-2018
评论
0/150
提交评论