《鸡兔同笼》优秀教学设计(优秀5篇)_第1页
《鸡兔同笼》优秀教学设计(优秀5篇)_第2页
《鸡兔同笼》优秀教学设计(优秀5篇)_第3页
《鸡兔同笼》优秀教学设计(优秀5篇)_第4页
《鸡兔同笼》优秀教学设计(优秀5篇)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第《鸡兔同笼》优秀教学设计〔优秀5篇〕

小学四年级数学下册《鸡兔同笼》教学设计篇一

教学过程:

一、游戏体验

师:这节课我们来做个鸡兔同笼的游戏好吗?

师:谁来介绍鸡和兔的特征?

生1:鸡一个头,两条腿

生2:兔一个头,四条腿

师:现在你们可以自己选择当鸡或当兔,同一排同学算同一个笼子,当鸡的同学站着,当兔的同学坐着,互相说说你们这一笼子小动物有几个头,几条腿?

〔学生游戏,体验鸡兔同笼〕

二、建立模型

师:谁来说说你们刚刚是怎样数出有多少只脚的?

生:用鸡数乘以2,用兔数乘以4。

板书:鸡数2+兔数4

师:通过刚刚的游戏你有什么发现?

生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

〔小组讨论〕

师;可以用什么方法把你们刚刚猜测的过程记录下来。

生发言:可以用画图或制成统计表的方法。

师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。

师:谁来说说,统计表中每栏要表示什么?

师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

〔小组活动〕

师:谁来说说你是怎样记录的?

反应总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?〔学生发言〕

您现在正在阅读的《鸡兔同笼》教学设计与反思文章内容由谁来说说三种方法哪种更快捷?

生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

师:如何调整?

生:当发现在尝试过程中所算出的腿数比的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比的腿数少,腿多的小动物要增加。

板书:猜测列举调整

三、稳固提升

师:刚刚我们通过了猜测列举调整等过程,解决了鸡兔同笼的问题,你们学会了吗?

1、一只蜘蛛8条腿,一只蜻蜓6条腿,现在共有蜘蛛、蜻蜓12只,共有腿80条。你能猜出蜘蛛、蜻蜓各有多少只吗?

2、王大富买来65只鸡和兔,分别把他们安排在15个笼子里。现鸡兔不同笼,如果每个鸡笼住5只鸡,每个兔笼住4只兔,你知道需要几个鸡笼和兔笼吗?

四、思想教育与总结

师:鸡兔同笼的问题很有意思吧。早在1500年前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

五、教学反思

对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习根底差,参与意识不强,因此本人对本堂课不是很满意

我认为我做的比拟成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的根本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。

就本堂课而言,还存在以下问题;

1、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一局部改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。

2、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

3、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。

4、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。

鸡兔同笼教学设计篇二

教学内容:

人教版课程标准实验教科书四年级下册第103-105页内容。

教学目标:

1、了解“鸡兔同笼〞问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼〞问题,

3、在解决问题的过程中培养学生逻辑推理能力。

教学重点:

尝试用假设法解决“鸡兔同笼〞这类问题。

教学过程:

一、课前游戏,导入课题。

二、创设情境,提出问题。

1、出示原题:

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作。《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题,让我们一起去看看吧!

〔电脑出示〕今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2、理解题意:

师:同学们,你们知道这道题的意思吗?谁愿意试着说一说!生:这道题的意思就是:今天有鸡和兔在一个笼子里,上面有35个头,下面有94只脚,问鸡和兔各有多少只?

师:大家同意吗?

〔电脑出示〕笼子里有假设干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?〔全班齐读〕

3、揭示课题:

师:这就是著名的‘鸡兔同笼’问题,也是这节课我们要研究的问题。

三、自主探索,解决问题

1、〔出例如1〕笼子里有假设干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2、分析并理解题意:

〔1〕从上面数,有8个头就是说鸡和兔的头一共有8个。〔也就是说鸡和兔一共有8只。〕

〔2〕从下面数,有26只脚就是说鸡脚和兔脚总数一共是26只脚。

〔3〕问题是什么?〔鸡和兔各有多少只?〕

3、猜一猜:随学生猜测板书并验证。

4、介绍列表法:

师:刚刚我们是随意猜的,其实我们还可以有顺序的猜。“〔电脑出示空的表格〕

小结:这种按顺序列表的方法我们称之为列表法。这样我们也就用列表法解决了这个问题。

5、介绍假设法:

当数字较大时,列表法就太麻烦了,能不能有其他更简单的方法呢?请同学们仔细观察表格,从表格中你能发现什么?小组之间交流一下。

〔1、〕假设全是鸡:在鸡兔总只数不变的情况下,每增加一只兔减少一只鸡,脚的只数就会增加2只。同学们,想想看我们应该增加几只兔,脚的只数会变成26只脚。同学们这个过程你们能用算式表示出来吗?请同学们试着用算式表示看看。

〔2、〕假设全是兔:先我们用假设全是鸡的方法解决了这个问题,现在假设全是兔有应该怎么分析和解决这个问题呢?同学们可以同桌边讨论边写算式?

小结:刚刚通过列表法我们想到了两种算术方法。回头看看这两种方法的第一步,一个是假设全是鸡,一个假设全是兔。我们把这两种方法起个名字?板书〔假设法〕

6、介绍孙子算经〔抬脚法〕

四、课堂练习

课本做一做“龟鹤问题〞

五、课堂小结

这节课你学到了什么?

板书设计

鸡兔同笼猜测法列表法假设法抬脚法

教学反思

鸡兔同笼教学设计篇三

教学目标:

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼〞的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:

从不同的角度分析,掌握解题的策略与方法。

教学流程:

一、创设情境,明确目标

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?〔5…〕太少了?〔50…〕多了,〔40…〕少了〔45…〕差不多了,〔46…〕恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流

1出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?〞

〔1〕你从中获取什么信息?……

〔2〕请你们猜一猜将鸡、兔可能是几只?〔……〕

〔3〕把你猜的过程给大家说一说

〔4〕板书学生的过程

鸡123

兔432

腿181614

〔4〕评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?〔重点引入列表〕

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?〞

〔1〕自己先想一想如何利用列表来解决?

〔2〕小组内交流一下自己的想法。

〔3〕独立完成列表。

〔4〕汇报想法和过程

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,〔腿多了,说明什么?兔子多了,怎么办?〕鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?〔每多一只鸡,少一只兔子,相应减少2条腿,〕

小组2:跳跃式列表------假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只〔或者其它几只〕,当腿的条数在50到60之间,〔提出问题:兔子可能是几只?到底是谁估计的更加接近呢?〕

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表------假设鸡兔各有10只

小组4:方程

小组5;奥书班中学习过算术方法〔让孩子清楚表达出自己的想法〕

三、适时反思,掌握策略〔两题任选其一〕

“同学们,鸡兔同笼〞

1、观察三种列表的方法,比拟异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸

1、课后练习1、2、3〔比拟不同-----答案是否唯一〕

2、通过今天的学习,有什么收获?

鸡兔同笼教学设计篇四

教学目标:

本活动的目的是通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。在“鸡兔同笼〞的活动中,通过列表枚举方法,解决鸡与兔的数量问题。

教学重点:

尝试用不同的方法解决鸡兔同笼问题,对尝试法有所了解和体验,并使学生体会假设方法解决此类问题的优越性。

教学难点:

在解决问题的过程中培养学生的逻辑推理能力。

教具准备:

电脑课件

教学过程:

一、创设问题情景

师:同学们今天老师带来2幅动物的图片请你们欣赏一下,看这是什么?〔出示公鸡图片〕这幅呢?〔出示兔子图片〕

师;这是两种同学们很熟悉的小动物。

师:一只鸡有几个头,几只脚?一只兔子有几个头?几只脚?一只兔子比一只鸡多几只脚,一只鸡比一只兔子多几只脚?

师:看来这几个问题对于你们来说太简单了。老师这儿还有一个有关于鸡兔的有趣问题我们一起来看看。

课件出示:

“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?〞

师:这个有趣的问题出自于我国大约在1500年前唐代的一部算书《孙子算经》。谁来读一读?

师:你们明白这句话的s://`意思吗?

〔如果学生说不出师可说,师:这句话的意思是,有假设干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,“鸡兔同笼〞问题是我国古代数学名题之一。这节课我们就一起来研究鸡兔同笼问题。〔板书课题〕同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!

如果生能说出这句话的意思。师:看来你了解的知识可真多。“鸡兔同笼〞问题是我国古代数学名题之一。这节课我们就一起来研究鸡兔同笼问题。〔板书课题〕同学们一起来比一比看谁能把这个古代数学名题解决,有没有信心!

二、解决问题

1、好!请看屏幕。课件出示

出示课件:鸡兔同笼,有20个头,54条腿,鸡、兔各有几只?

师;谁来读一读题目中的数学信息和数学问题。

2、师:请同学们先想一想,如何解决这个问题?

师:把你的想法,解决问题的过程写在本子上。

3、生在做题时,师在注意巡视,选择有代表性的做法。

4、展示学生的答案。

实验投影展示

10分钟后进入小组汇报、集体交流阶段。

小组1:我们采用列表法得出的答案。〔实物投影展示小组的成果〕先假设有1只鸡,19只兔子,脚就有78只,太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

〔也许学生不知道这是用列表法解决问题,师你能给你这种解决问题的方法起个名字吗?〕

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比拟简便。

师:这三个小组的同学都采用了列表的方法来解决问题,你们为什么要采用列表的方法解决这样的问题呢?

生1:列表可以帮助我们一一举例,从中找出需要的答案。

生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

师:同样采用列表的方法解决这个问题,可这三种列表的方法又有什么不同呢?

生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

生4:虽说第一小组的方法可以完全地列出全部的答案,但比拟麻烦。我认为第三组的方法比拟好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

师:在采用列表法解决这个问题的同时,还采用了一种解决问题的方法,你们知道采用了什么方法吗?

师:对!还采用了假设的方法。

师:同样采用列表、假设的方法解决这个问题,可是解决问题的过程却有不同。如果现在让你选择其中一种列表的方法解决鸡兔同笼问题,你会选择哪种列表解决问题的方法?为什么?

师:小结:同学说得都很有道理,同样选择列表的方法,我们可根据题目的实际条件,选择适当的方法取中列举的方法,由于鸡与兔共20只,所以各取10只,接着在举例中根据实际的数据情况确定举例的方向,这样可以大大缩小举例的范围。快又准确地寻找到我们需要的答案。

4、有其他的解法吗?〔老师让举手的其中三名学生上台板演〕

生5:假设20只都是鸡,那么兔有:〔54-20某2〕÷〔4-2〕=7〔只〕,鸡有20-7=13〔只〕。

生6:假设20只都是兔,那么鸡有:〔4某20-54〕÷〔4-2〕=13〔只〕,兔有20-13=7〔只〕。

5、生还可能采用画图的方法。

师:同学太聪明了,想出了这么多好方法,我们可以选择画图、列表、假设等方法解决问题,在这些方法中我们可以选择取中列表法。在列表时应注意如何设计表头:

现在大家就根据列表的方法解决一些问题吧!

三、自主练习

同学们可以用列表的方法独立地尝试解决。

1、鸡兔同笼,有17个头,42条腿,鸡、兔各几只?请你列表的方法解决。〔想一想怎样设计表头〕

〔例题中的表格老师已经设计了表头,练习题中,放手让学生根据已有的经验自己设计,培养学生数据的收集、整理能力。〕

2、同学们的材料袋里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

生做题后汇报自己解决问题的方法,师问:你为什么选择这种解决问题的方法?

师小结:通过以上的练习可以看出同学们能够根据不同的题目选择列表假设的方法解决有关于鸡兔同笼的问题。

四、小结:

师:通过这节课的学习,你有什么收获?

总结:这节课同学们采用了不同解决问题的方法解决了我国古代数学名题之一“鸡兔同笼的问题〞。希望同学们今后在学习中也能象今天一样肯于动脑,勤于思考,选择适宜的方法解决实际问题。

鸡兔同笼教学设计篇五

一、教学目标

〔一〕知识与技能

了解“鸡兔同笼〞问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

〔二〕过程与方法

经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼〞问题,引导学生有序思考,使学生体会解题策略的多样性。

〔三〕情感态度和价值观

在解决问题的过程中,培养学生的迁移思维能力,感受古代数学问题的趣味性。

二、教学重难点

教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。

教学难点:理解用假设法解决“鸡兔同笼〞问题的算理。

三、教学准备

课件、实物投影。

四、教学过程

〔一〕情境导入

教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼〞问题。

〔板书课题:鸡兔同笼〕

出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?

学生:笼子里有假设干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?

教师:从题中获取信息,你知道了什么,要求什么问题?

〔二〕探究新知

1.尝试解决,交流想法。

既然“鸡兔同笼〞问题能流传至今,就应该有它独特的思考方式和解题方法。

问题:同学们想一想,算一算鸡和兔各有多少只?

2.感受化繁为简的必要性。

大家在刚刚猜了好几组数据,经过验证都不正确,为什么猜不对呢?

数据大了不好猜,我们应该怎么办?

我们把数字改小些,先从简单的问题入手。

〔课件出例如1〕“笼子里有假设干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?〞

教师:从题中你们能获取哪些信息?和生活常识联系在一起,你还能说出哪些信息?

预设:

学生1:鸡和兔共8只,鸡和兔共有26只脚。

学生2:鸡有2只脚,兔有4只脚。

渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼〞问题的结构特点。

3.猜测验证。

教师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件?

学生:鸡和兔一共有8只。

教师:是不是抓住这个条件就一定能马上猜准确呢?好,老师这里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。

学生汇报。

小结:这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。〔板书:列表法〕

教师:老师刚刚发现,很多同学都完成得非常快,很了不起!那么,同学们,你们觉得用列表法解决“鸡兔同笼〞问题怎么样呢?

预设:

学生1:列表法能很清晰地解决这个问题。

学生2:因为数字比拟简单,所以列表法还可以用,但是数字变大时,列表法就会比拟麻烦,会浪费很多时间。

教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚刚列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

学生小组交流汇报。

预设:

学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的根底,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

4.数形结合理解假设法。

教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

〔1〕假设全是鸡。

教师:我们先看表格中左起的第一列,8和0是什么意思?

学生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡。

教师:那笼子里是不是全是鸡呢?这也就是把什么当什么来算了?

学生:不是,我们是把一只4只脚的兔当成一只2只脚的鸡来算的。

教师:这样算会有什么结果呢?

学生:每少算一只兔就会少算2只脚。

教师:假设全是鸡,一共是16只脚。实际有26只脚,这样笼子里就少了10只脚,这说明什么呢?

学生:每只鸡比兔少2只脚,少了10只脚说明笼子里有5只兔。

教师:你们能列出算式吗?

学生尝试列算式。

教师以画图法进行演示:

8某2=16〔只〕。〔如果把兔全当成鸡,一共就有8某2=16只脚。〕

26-16=10〔只〕。〔把兔看成鸡来算,4只脚的兔当成2只脚的鸡算,每只兔就少算了2只脚,10只脚是少算的兔的脚数。〕

4-2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论