




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//24MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr25Sounds-fingerprints25Sounds-fingerprints26IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube34ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianDiUnderstandingSemanticsUnderstandingSemantics人工智能详解课件人工智能详解课件人工智能详解课件人工智能详解课件人工智能详解课件Demographics–MSAdCenterLabDemographics–MSAdCenterLabCommercialIntentionsofGivenWebsiteCommercialIntentionsofGiven人工智能详解课件人工智能详解课件人工智能详解课件人工智能详解课件Ifyouwanttosellone,whatisthebestprice?N97(NokiaPhone)N97(NokiaPhone)MinorityGameEIFarolBarMinorityGameModelApplicationInRealworldTherearemorethan100IrishmusicloversbutElFarolhasonly60seats.Theshowisenjoyableonlywhenfewerthan60peopleshowup.Everypeopleshoulddecideweeklywhethergotothebartoenjoylivemusicintheriskofstayinginacrowdplaceorstayathome.Therulesaresimple:afinitenumberofplayershavetochoosebetweentwosides;whoeverendsupintheminoritysideisawinner.SimplifiedfrommarketaimingtoanalyzecomplexfinancialmarketMinorityGameEIFarolBarMinorCollectiveBehaviorDecompositionCollectiveBehaviorDecompositSimulationResults(Li,MaandQin,2010)SimulationResults(Li,Maand人工智能详解课件人工智能详解课件YingMa,GuanyiLi,YingsaiDongandZengchangQin(2010),Minoritygamedataminingformarketpredictions,forStockMarketPredictions,toappearintheProceedingsofAAMAS2010.GuanyiLi,YingMa,YingsaiDongandZengchangQin(2010),Behaviorlearninginminoritygames,ToappearintheProceedingsofCARE2009.ZengchangQin,MarcusThintandZhihengHuang(2009),Rankinganswersbyhierarchicaltopicmodels,ProceedingsofIEA/AIE2009,LNCS5579,pp.103-112,Springer.ZhihengHuang,MarcusThintandZengchangQin(2008),Questionclassificationusingheadwordsandtheirhypernyms,TheProceedingsofConferenceonEmpiricalMethodsonNaturalLanguageProcessing,pp.927-936,ACL.ReferencesYingMa,GuanyiLi,YingsaiDoNon-academicNon-academicAcademicAIAcademicAIFuzzyLogicandLogicofScienceFuzzyLogicandLogicofScienNLP&ANNNLP&ANNGA,ALIFE&Multi-agentGA,ALIFE&Multi-agentWeb:orGoogle“ZengchangQin”formyLinkedInProfiles.ContactInformationWeb:orGoogThankyouverymuch!Anyquestions?人工智能详解课件ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//93MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr94Sounds-fingerprints25Sounds-fingerprints95IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube103ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多媒体技术试题及答案集合
- 创新备考人力资源试题及答案
- 七年级地理上册 1.4地形图的判读教学实录 (新版)新人教版
- 企业实务监理工程师试题及答案
- 物流供应链的创新模式解析试题及答案
- 全面复习计划及人力资源管理师试题及答案
- 新兴市场银行业务机遇与挑战试题及答案
- 2025年触变剂项目建议书
- 2023三年级英语上册 Unit 8 Happy New year第1课时教学实录 牛津译林版
- 电脑美术-你追我赶(教学设计)-2023-2024学年人美版(2012)美术四年级下册
- 2022-2023学年浙江省温州市文成县七年级(下)期中数学试卷-普通用卷
- AQ2012-2007 石油天然气安全规程
- 维克多高中英语3500词汇
- 除草机器人简介
- 2015-2022年苏州信息职业技术学院高职单招语文/数学/英语笔试参考题库含答案解析
- 高中音乐鉴赏 第一单元 学会聆听 第一节《音乐要素及音乐语言》
- 当代文学第一章1949-1966年的文学思潮
- GB/T 25254-2022工业用聚四亚甲基醚二醇(PTMEG)
- GB/T 24456-2009高密度聚乙烯硅芯管
- GB 6222-2005工业企业煤气安全规程
- 中国药典2015年版
评论
0/150
提交评论