2023届浙江省金华市婺城区中考数学模拟精编试卷含答案解析_第1页
2023届浙江省金华市婺城区中考数学模拟精编试卷含答案解析_第2页
2023届浙江省金华市婺城区中考数学模拟精编试卷含答案解析_第3页
2023届浙江省金华市婺城区中考数学模拟精编试卷含答案解析_第4页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届浙江省金华市婺城区中考数学模拟精编试卷注意事项1.考生要认真填写考场号和座位序号。2.测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A.65π B.90π C.25π D.85π2.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根3.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是()A.9cmB.12cmC.9cm或12cmD.14cm4.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°5.下列说法错误的是()A.的相反数是2 B.3的倒数是C. D.,0,4这三个数中最小的数是06.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是()A.14 B.-17.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.18.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.9.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.10.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.12.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.13.如图所示,轮船在处观测灯塔位于北偏西方向上,轮船从处以每小时海里的速度沿南偏西方向匀速航行,小时后到达码头处,此时,观测灯塔位于北偏西方向上,则灯塔与码头的距离是______海里(结果精确到个位,参考数据:,,)14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.15.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为_____.16.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.三、解答题(共8题,共72分)17.(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?18.(8分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.(1)求证:;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.①如图2,若∠AFE=45°,求的值;②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.19.(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:m=,n=;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?20.(8分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.21.(8分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.22.(10分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.23.(12分)先化简,再在1,2,3中选取一个适当的数代入求值.24.数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?

2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、B【答案解析】

根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.【题目详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长==13,所以圆锥的表面积=π×52+×2π×5×13=90π.故选B.【答案点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.2、D【答案解析】

解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.3、B【答案解析】当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选B.4、C【答案解析】【分析】根据相似多边形性质:对应角相等.【题目详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【答案点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.5、D【答案解析】测试卷分析:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.6、A【答案解析】

根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【题目详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故选A.7、A【答案解析】

由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【题目详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【答案点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.8、B【答案解析】测试卷分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.9、D【答案解析】

根据中心对称图形的概念求解.【题目详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【答案点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【答案解析】

根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【题目详解】∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线∴b<0,二次函数图形与轴有两个交点,则>0,∵当x=1时y=a+b+c<0,∴的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【答案点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【答案解析】测试卷解析:∵总人数为14÷28%=50(人),∴该年级足球测试成绩为D等的人数为(人).故答案为:1.12、1【答案解析】

根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.【题目详解】解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案为:1.【答案点睛】此题考查旋转的性质,即图形旋转后与原图形全等.13、1【答案解析】

作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.【题目详解】∠CBA=25°+50°=75°,作BD⊥AC于点D,则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【答案点睛】本题考查了解直角三角形的应用——方向角问题,正确求得∠CBD以及∠CAB的度数是解决本题的关键.14、23【答案解析】

用女生人数除以总人数即可.【题目详解】由题意得,恰好是女生的准考证的概率是2350故答案为:2350【答案点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn15、1【答案解析】

根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【题目详解】解:∵点与点关于y轴对称,∴故答案为1.【答案点睛】考查关于轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.16、4【答案解析】

根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【题目详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【答案点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.三、解答题(共8题,共72分)17、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【答案解析】

(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【题目详解】(1)设商场第一次购进x套运动服,由题意得解这个方程,得经检验,是所列方程的根.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y元,由题意得,解这个不等式,得答:每套运动服的售价至少是200元.【答案点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.18、(1)见解析;(2)①;②cos∠AFE=【答案解析】

(1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;(2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.【题目详解】(1)设BE=EC=2,则AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,则,∴;(2)①如图2,过F作交AD于点G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如图3,作交AD于点T,作于H,则,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,设CF=2,则CE=6,可设AT=x,则TF=3x,,∴,且,由,得,解得x=5,∴.【答案点睛】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.19、(1)70,0.2(2)70(3)750【答案解析】

(1)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.【题目详解】解:(1)由题意可得,m=200×0.35=70,n=40÷200=0.2,故答案为70,0.2;(2)由(1)知,m=70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.【答案点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)150,(1)证明见解析(3)【答案解析】

(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;(1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.测试卷解析:【题目详解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案为150,PA1+PC1=PB1;(1)如图,作°,使,连接,.过点A作AD⊥于D点.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如图1,与(1)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA•cos(90°-)=PA•sin,∴PP′=1PA•sin,∴4PA1sin1+PC1=PB1,故答案为4PA1sin1+PC1=PB1.【答案点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.21、(1)2400个,10天;(2)1人.【答案解析】

(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即为原计划安排的工人人数.【题目详解】解:(1)解:设原计划每天生产零件x个,由题意得,,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天.(2)设原计划安排的工人人数为y人,由题意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.经检验,y=1是原方程的根,且符合题意.答:原计划安排的工人人数为1人.【答案点睛】本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.22、(1);(2),;(3)【答案解析】测试卷分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论