![2022届北京市顺义区中考四模数学试题含解析_第1页](http://file4.renrendoc.com/view/8da757f15022c87f43a7233f681da64b/8da757f15022c87f43a7233f681da64b1.gif)
![2022届北京市顺义区中考四模数学试题含解析_第2页](http://file4.renrendoc.com/view/8da757f15022c87f43a7233f681da64b/8da757f15022c87f43a7233f681da64b2.gif)
![2022届北京市顺义区中考四模数学试题含解析_第3页](http://file4.renrendoc.com/view/8da757f15022c87f43a7233f681da64b/8da757f15022c87f43a7233f681da64b3.gif)
![2022届北京市顺义区中考四模数学试题含解析_第4页](http://file4.renrendoc.com/view/8da757f15022c87f43a7233f681da64b/8da757f15022c87f43a7233f681da64b4.gif)
![2022届北京市顺义区中考四模数学试题含解析_第5页](http://file4.renrendoc.com/view/8da757f15022c87f43a7233f681da64b/8da757f15022c87f43a7233f681da64b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.π B.2π C.4π D.8π2.下列图形是中心对称图形的是()A. B. C. D.3.如图所示的几何体的主视图正确的是()A. B. C. D.4.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=135.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为()A.780×105B.78×106C.7.8×107D.0.78×1086.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.187.下列命题中,真命题是()A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离8.下列计算正确的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a29.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°10.小明解方程的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.① B.② C.③ D.④二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_____.12.将ΔABC绕点B逆时针旋转到ΔA'BC'使A、B、C'在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为________cm13.方程的解是__________.14.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.15.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.16.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.17.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系xOy中,抛物线y=12x(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.19.(5分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.20.(8分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?21.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).22.(10分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.23.(12分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.24.(14分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径的长为:=2π.故选B.考点:弧长的计算;旋转的性质.2、B【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【详解】请在此输入详解!3、D【解析】
主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.4、A【解析】
要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.5、C【解析】
科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:78000000=7.8×107.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.6、A【解析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.7、D【解析】
根据两圆的位置关系、直线和圆的位置关系判断即可.【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;故选:D.【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.8、D【解析】
根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】-aa-b2a2-3a故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.9、D【解析】分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.10、A【解析】
根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【详解】=1,去分母,得1-(x-2)=x,故①错误,故选A.【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】
设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】解:设HG=x.∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,则矩形EFGH的面积=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,则矩形EFGH的面积最大值为1.故答案为1.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.12、4π【解析】分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案为4π.点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.13、.【解析】
根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.14、1【解析】
利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.【详解】a2+b2﹣8a﹣4b+20=0,a2﹣8a+16+b2﹣4b+4=0,(a﹣4)2+(b﹣2)2=0a﹣4=0,b﹣2=0,a=4,b=2,则a2﹣b2=16﹣4=1,故答案为1.【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.15、【解析】
连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图,连接AC、CF、GE,CF和GE相交于O点∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的对角线,∴,∴,∴∵==,∴在,又∵H是AF的中点∴.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.16、1【解析】
根据弧长公式l=代入求解即可.【详解】解:∵,∴.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.17、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.三、解答题(共7小题,满分69分)18、(1)y=12x+1【解析】试题分析:(1)首先根据抛物线y=12x2-x+2求出与y轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为y=kx+b.代入点B,点C的坐标,然后解方程组即可;(2)求出点D、E、F的坐标,设点A平移后的对应点为点A',点D平移后的对应点为点D'.当图象G向下平移至点A'与点E重合时,点D'在直线BC上方,此时t=1;当图象G向下平移至点D'试题解析:解:(1)∵抛物线y=12x∴点A的坐标为(0,2).1分∵y=1∴抛物线的对称轴为直线x=1,顶点B的坐标为(1,32又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为y=kx+b.∵直线BC经过点B(1,32∴k+b=32∴直线BC的解析式为y=1(2)∵抛物线y=1当x=4时,y=6,∴点D的坐标为(1,6).1分∵直线y=1当x=0时,y=1,当x=4时,y=3,∴如图,点E的坐标为(0,1),点F的坐标为(1,2).设点A平移后的对应点为点A',点D平移后的对应点为点D'.当图象G向下平移至点A'与点E重合时,点D'在直线BC上方,此时t=1;5分当图象G向下平移至点D'与点F重合时,点A'在直线BC下方,此时t=2.6分结合图象可知,符合题意的t的取值范围是1<t≤考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.19、(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.【解析】
(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.20、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.【解析】
探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
(2)由(1)的结论结合参会人数为n,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n(n为正整数),∴每人需跟(n-1)人握手,∴握手总数为.故答案为.(3)依题意,得:=28,
整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去).∵m为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.21、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则,解得:=0.1=10%,=-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a元时0.9a-266.2>0解得:a>故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题22、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)【解析】分析:(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);故答案为(﹣2,﹣5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.故答案为6+4.点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.23、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工单位见证取样制度
- 科技背景下家庭教育的创新与实践
- 小区工厂医院智能化弱电系统设计解决方案课件
- DB3715T 70-2025楝树栽培技术规程
- 三人创业合作经营合同
- 专业市场店铺租赁合同模板
- 二手挖机转让合同范本
- 个人借款与担保合同示范文本
- 二手房销售独家委托合同
- 中小企业流动资金循环贷款合同模板
- 《新能源汽车技术》课件-第二章 动力电池
- 三坐标考试试题和答案
- 数字金融 远程音视频手机银行技术规范
- 2024届高考语文一轮复习:论证思路专练(含答案)
- 四年级学业指导模板
- 2024版医院布草洗涤承包合同:医疗设施布草清洗外包协议3篇
- 会议系统设备维护方案
- 少儿口才培训主持课件
- 新《学前教育法》知识讲座课件
- 公文写作题库(500道)
- 学校教学常规管理学习活动课件
评论
0/150
提交评论