下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.122.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°3.计算的结果是().A. B. C. D.4.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C. D.5.下列图形中,不是轴对称图形的是()A. B. C. D.6.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A. B. C. D.7.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.= B.=C.= D.=8.若3x>﹣3y,则下列不等式中一定成立的是()A. B. C. D.9.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个10.已知函数的图象与x轴有交点.则的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3二、填空题(共7小题,每小题3分,满分21分)11.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.12.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为.13.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.14.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.15.分解因式6xy2-9x2y-y3=_____________.16.在中,若,则的度数是______.17.的系数是_____,次数是_____.三、解答题(共7小题,满分69分)18.(10分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.19.(5分)综合与探究如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;②求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.20.(8分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:.21.(10分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.22.(10分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?23.(12分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)24.(14分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA∵△ABC是等腰三角形,点D是BC边上的中点∴∴解得∵EF是线段AC的垂直平分线∴点A关于直线EF的对称点为点C∴∵∴AD的长为BM+MD的最小值∴△CDM的周长最短故选:C.【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.2、B【解析】
延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;【详解】延长AC交DE于点F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;
②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.3、D【解析】
根据同底数幂的乘除法运算进行计算.【详解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.【点睛】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.4、C【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.5、A【解析】
观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.故选A.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.6、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解:∵EF∥AB,∴△CEF∽△CAB,∴,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.7、A【解析】
设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等即可列方程.【详解】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等可得=.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.8、A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.9、B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.10、B【解析】试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.二、填空题(共7小题,每小题3分,满分21分)11、7π【解析】
连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.【详解】连接OD,∵直线DE与⊙O相切于点D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的长==7π,故答案为:7π.【点睛】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.12、2【解析】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣1,2),∵双曲线y=经过点D,∴k=﹣1×2=﹣6,∴△BOC的面积=|k|=1.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.13、.【解析】
探究规律,利用规律即可解决问题.【详解】∵∠MON=45°,∴△C2B2C2为等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的边长为2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案为2-.【点睛】本题考查规律型问题,解题的关键是学会探究规律的方法,学会利用规律解决问题,属于中考常考题型.14、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.详解:∵平均数为6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差为:.点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.15、-y(3x-y)2【解析】
先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.16、【解析】
先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.【详解】在中,,,,,,,故答案为:.【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.17、1【解析】
根据单项式系数及次数的定义进行解答即可.【详解】根据单项式系数和次数的定义可知,﹣的系数是,次数是1.【点睛】本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.三、解答题(共7小题,满分69分)18、(1);(2);(2)小贝的说法正确,理由见解析,.【解析】
(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.∵△DCE为等边三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四边形ABCD为正方形,∴△OHD为等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,由题意知,点N为AD的中点,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,设AO=r,则ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴门角B到门窗弓形弧AD的最大距离为.【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.19、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.【解析】
(1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.【详解】(1)当y=0时,﹣=0,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,故直线l的表达式为y=﹣x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO与△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,当点M在OB上运动时,如图,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).综上得,D(t﹣3+,t﹣3).将D点坐标代入直线解析式得t=6﹣2,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,经检验t=3﹣是此方程的解,过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).故P(2,﹣).【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.20、见解析【解析】
(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、证明过程见解析【解析】
由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.【详解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).22、该工程队原计划每周修建5米.【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.【详解】设该工程队原计划每周修建x米.由题意得:+1.整理得:x2+x﹣32=2.解得:x1=5,x2=﹣6(不合题意舍去).经检验:x=5是原方程的解.答:该工程队原计划每周修建5米.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.23、(1)这种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产 专题报告-成都-严森-蓝光雍锦系产品研究
- 糖果行业的价格竞争与波动分析
- DB4107T 502-2024 专利申请快速预审服务规范
- 口腔科利用PDCA循环降低颌面外科患者胃管自拔率品管圈QCC活动书面报告
- 2023年变速箱齿轮资金筹措计划书
- 强化复合地板浸渍纸生产工艺设计
- 纤维增强复合材料防眩栅技术规范-编制说明
- 有意义的研讨会主持词(3篇)
- 消防月活动总结
- 新教材高考地理二轮复习二7类选择题技法专项训练技法3含答案
- 中国围棋竞赛规则(2002)
- 消防检验批验收记录表
- 信息化系统集成项目项目竣工报告建文
- 中国建设银行员工内部等级表
- 培智学校课程标准
- 2017年泰安市职业技术院校技能大赛
- 建筑CAD平面图信息化大赛教学教案
- 第一节细菌和真菌的分布ppt
- 海尼曼G1内容梳理(2)
- 新版atstudy系统测试计划
- 求异思维换个度
评论
0/150
提交评论