2023年福建省政和一中、周宁一中高考仿真卷数学试卷(含答案解析)_第1页
2023年福建省政和一中、周宁一中高考仿真卷数学试卷(含答案解析)_第2页
2023年福建省政和一中、周宁一中高考仿真卷数学试卷(含答案解析)_第3页
2023年福建省政和一中、周宁一中高考仿真卷数学试卷(含答案解析)_第4页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,则集合的子集个数为()A. B. C. D.2.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.4C. D.53.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多4.已知双曲线的右焦点为为坐标原点,以为直径的圆与双曲线的一条渐近线交于点及点,则双曲线的方程为()A. B. C. D.5.若变量,满足,则的最大值为()A.3 B.2 C. D.106.设是定义域为的偶函数,且在单调递增,,则()A. B.C. D.7.函数的大致图象是()A. B.C. D.8.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.9.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.10.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是()A. B. C. D.11.已知向量,,则与的夹角为()A. B. C. D.12.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则______.14.过点,且圆心在直线上的圆的半径为__________.15.已知集合,,则_____________.16.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且.(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.19.(12分)已知函数(I)若讨论的单调性;(Ⅱ)若,且对于函数的图象上两点,存在,使得函数的图象在处的切线.求证:.20.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.21.(12分)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?22.(10分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】

先求B.再求,求得则子集个数可求【题目详解】由题=,则集合,故其子集个数为故选C【答案点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题2.B【答案解析】

还原几何体的直观图,可将此三棱锥放入长方体中,利用体积分割求解即可.【题目详解】如图,三棱锥的直观图为,体积.故选:B.【答案点睛】本题主要考查了锥体的体积的求解,利用的体积分割的方法,考查了空间想象力及计算能力,属于中档题.3.D【答案解析】

根据两个图形的数据进行观察比较,即可判断各选项的真假.【题目详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【答案点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.4.C【答案解析】

根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【题目详解】由双曲线,则渐近线方程:,,连接,则,解得,所以,解得.故双曲线方程为.故选:C【答案点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.5.D【答案解析】

画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【题目详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.6.C【答案解析】

根据偶函数的性质,比较即可.【题目详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【答案点睛】本题考查对数的运算及偶函数的性质,是基础题.7.A【答案解析】

用排除B,C;用排除;可得正确答案.【题目详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【答案点睛】本题考查了函数图象,属基础题.8.D【答案解析】

根据三视图还原出几何体,找到最大面,再求面积.【题目详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【答案点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.9.B【答案解析】

先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【题目详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【答案点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.10.B【答案解析】

由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.【题目详解】解:函数,,为的零点,为图象的对称轴,,且,、,,即为奇数①.在,单调,,②.由①②可得的最大值为1.当时,由为图象的对称轴,可得,,故有,,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B.【答案点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.11.B【答案解析】

由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【题目详解】解:由题意得,设与的夹角为,,由于向量夹角范围为:,∴.故选:B.【答案点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.12.A【答案解析】

依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【题目详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【答案点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

直接利用关系式求出函数的被积函数的原函数,进一步求出的值.【题目详解】解:若,则,即,所以.故答案为:.【答案点睛】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.14.【答案解析】

根据弦的垂直平分线经过圆心,结合圆心所在直线方程,即可求得圆心坐标.由两点间距离公式,即可得半径.【题目详解】因为圆经过点则直线的斜率为所以与直线垂直的方程斜率为点的中点坐标为所以由点斜式可得直线垂直平分线的方程为,化简可得而弦的垂直平分线经过圆心,且圆心在直线上,设圆心所以圆心满足解得所以圆心坐标为则圆的半径为故答案为:【答案点睛】本题考查了直线垂直时的斜率关系,直线与直线交点的求法,直线与圆的位置关系,圆的半径的求法,属于基础题.15.【答案解析】

由集合和集合求出交集即可.【题目详解】解:集合,,.故答案为:.【答案点睛】本题考查了交集及其运算,属于基础题.16.【答案解析】

设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【题目详解】解:设,由双曲线的定义得出:,,由图可知:,又,即,则,为等腰三角形,,设,,则,,即,解得:,则,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案为:.【答案点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【答案解析】

(1)不妨设,,计算得到,根据面积得到,计算得到答案.(2)设,,,联立方程利用韦达定理得到,,代入化简计算得到答案.【题目详解】(1)由题意不妨设,,则,.∵,∴,∴.又,∴,∴,,故的方程为.(2)设,,,则.∵,∴,设直线的方程为,联立整理得.∵在上,∴,∴上式可化为.∴,,,∴,,∴.∴.【答案点睛】本题考查了椭圆方程,定值问题,意在考查学生的计算能力和综合应用能力.18.(1):,:;(2),此时.【答案解析】试题分析:(1)的普通方程为,的直角坐标方程为;(2)由题意,可设点的直角坐标为到的距离当且仅当时,取得最小值,最小值为,此时的直角坐标为.试题解析:(1)的普通方程为,的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离的最小值,.当且仅当时,取得最小值,最小值为,此时的直角坐标为.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.19.(1)见解析(2)见证明【答案解析】

(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设,用导数方法判断出的单调性,进而可得出结论成立.【题目详解】(1)解:易得,函数的定义域为,,令,得或.①当时,时,,函数单调递减;时,,函数单调递增.此时,的减区间为,增区间为.②当时,时,,函数单调递减;或时,,函数单调递增.此时,的减区间为,增区间为,.③当时,时,,函数单调递增;此时,的减区间为.综上,当时,的减区间为,增区间为:当时,的减区间为,增区间为.;当时,增区间为.(2)证明:由题意及导数的几何意义,得由(1)中得.易知,导函数在上为增函数,所以,要证,只要证,即,即证.因为,不妨令,则.所以,所以在上为增函数,所以,即,所以,即,即.故有(得证).【答案点睛】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性以及函数极值等即可,属于常考题型.20.(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.【答案解析】

(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;(Ⅲ)先求出数列是以为首项,1为公差的等差数列,,,问题转化为证明:,通过换元法或数学归纳法进行证明即可.【题目详解】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),,当时,f′(x)<2,当时,f′(x)>2,所以函数f(x)在上单调递减,在单调递增.(Ⅱ)设,则,因为x≥2,故,(ⅰ)当a≥1时,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)单调递减,而g(2)=2,所以对所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)当1<a<1时,2<1﹣a<1,若,则g′(x)>2,g(x)单调递增,而g(2)=2,所以当时,g(x)>2,即f(x)>ax;(ⅲ)当a≤1时,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)单调递增,而g(2)=2,所以对所有的x>2,g(x)>2,即f(x)>ax;综上,a的最小值为1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an•an+1,由a1=1得,an≠2,所以,数列是以为首项,1为公差的等差数列,故,,,⇔,由(Ⅱ)知a=1时,,x>2,即,x>2.法一:令,得,即因为,所以,故.法二:⇔下面用数学归纳法证明.(1)当n=1时,令x=1代入,即得,不等式成立(1)假设n=k(k∈N*,k≥1)时,不等式成立,即,则n=k+1时,,令代入,得,即:,由(1)(1)可知不等式对任何n∈N*都成立.故.考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值;3、数列的通项公式;4、数列的前项和;5、不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论