




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a2.下列函数中,与函数是同一函数的是()A. B.C. D.3.函数的最小值为()A. B.3C. D.4.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件5.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.86.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角7.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A.{−2,3} B.{−2,2,3}C.{−2,−1,0,3} D.{−2,−1,0,2,3}8.已知设alog30.2,b30.2,c0.23,则a,b,c的大小关系是()A.abc B.acbC.bac D.bca9.设,为平面向量,则“存在实数,使得”是“向量,共线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.设全集,集合,则等于A. B.C. D.11.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.60012.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.3二、填空题(本大题共4小题,共20分)13.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.14.已知函数,则函数的值域为______15.已知函数,则当______时,函数取到最小值且最小值为_______.16.已知是定义在R上的周期为2的奇函数,当时,,则___________.三、解答题(本大题共6小题,共70分)17.已知函数的部分图象如图所示.(1)求函数的解析式;(2)求方程在区间内的所有实数根之和.18.已知函数(1)若函数图像关于直线对称,且,求的值;(2)在(1)的条件下,当时,求函数的值域.19.已知.(1)化简;(2)若是第二象限角,且,求的值.20.某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.21.已知函数且为自然对数的底数).(1)判断函数的奇偶性并证明(2)证明函数在是增函数(3)若不等式对一切恒成立,求满足条件的实数的取值范围22.已知定义域为的函数是奇函数.(1)求实数a的值;(2)若不等式在有解,求实数m取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B2、C【解析】确定定义域相同,对应法则相同即可判断【详解】解:定义域为,A中定义域为,定义域不同,错误;B中化简为,对应关系不同,错误;C中定义域为,化简为,正确;D中定义域为,定义域不同,错误;故选:C3、C【解析】运用乘1法,可得,再利用基本不等式求最值即可.【详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A5、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.6、D【解析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.7、A【解析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:,则.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.8、D【解析】由指数和对数函数单调性结合中间量0和1来比较a,b,c的大小关系即可有结果.【详解】因为,,所以故选:D9、A【解析】结合充分条件和必要条件的概念以及向量共线即可判断.【详解】充分性:由共线定理即可判断充分性成立;必要性:若,,则向量,共线,但不存在实数,使得,即必要性不成立.故选:A.10、A【解析】,=11、A【解析】频数为考点:频率频数的关系12、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.二、填空题(本大题共4小题,共20分)13、﹣8【解析】根据AC的斜率等于AB的斜率得到,解方程即得解.【详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【点睛】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.14、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.15、①.②.【解析】利用基本不等式可得答案.【详解】因为,所以,当且仅当即等号成立.故答案为:;.16、##【解析】根据函数的周期和奇偶性即可求得答案.【详解】因为函数的周期为2的奇函数,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)由图像得,并求解出周期为,从而得,再代入最大值,利用整体法,从而求解得,可得解析式为;(2)作出函数与的图像,可得两个函数在有四个交点,从而得有四个实数根,再利用三角函数的对称性计算得实数根之和.【小问1详解】由图可知,,∴∴,又点在的图象上∴,∴,,,∵,∴,∴.【小问2详解】由图得在上的图象与直线有4个交点,则方程在上有4个实数根,设这4个实数根分别为,,,,且,由,得所以可知,关于直线对称,∴,关于直线对称,∴,∴【点睛】求三角函数的解析式时,由即可求出;确定时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标,则令或,即可求出,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出和,若对,的符号或对的范围有要求,则可用诱导公式变换使其符合要求.18、(1)w=1;(2)[0,].【解析】(1)求出函数的对称轴,求出求的值.(2)根据x的范围,利用三角函数的图像和性质求出f(x)的范围得解.【详解】(1)∵函数f(x)的图象关于直线对称,∴kπ,k∈Z,∴ω=1k,k∈Z,∵ω∈(0,2],∴ω=1,(2)f(x)=sin(2x),∵0≤x,∴2x,∴sin(2x)≤1,∴0≤f(x),∴函数f(x)的值域是[0,]【点睛】本题考查了正弦函数的单调性、值域问题,熟练掌握三角函数的性质是解题的关键19、(1);(2).【解析】(1)根据诱导公式对进行化简即可(2)先由求得,再根据(1)的结论及同角三角函数关系式求解【详解】(1)(2),,∵是第二象限角,∴,【点睛】本题考查利用诱导公式进行化简,涉及利用同角三角函数关系由正弦值求余弦值,属综合基础题.20、电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.【解析】根据题意列新增用电量,再乘以单价利润得收益,列不等式,解一元二次不等式,根据限制条件取交集得电价取值范围,即得最低电价试题解析:设新电价为元/千瓦时,则新增用电量为千瓦时.依题意,有,即,整理,得,解此不等式,得或,又,所以,,因此,,即电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.21、(1)见解析;(2)见解析;(3).【解析】(1)定义域为,关于原点对称,又,为奇函数(2)任取,,且,则===,又在上为增函数且,,,,在上是增函数(3)由(1)知在上为奇函数且单调递增,由得由题意得,即恒成立,又.综上得的取值范围是点睛:本题是一道关于符合函数的题目,总体方法是掌握函数奇偶性和单调性的知识,属于中档题.在证明函数单调性时可以运用定义法证明,在解答函数中的不等式时,要依据函数的单调性,比较两数大小,含有参量时要分离参量计算最值22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重型货车租用合同书(合同版本)
- 《2025商品房买卖合同解除申请表》
- 2025新款企业租赁合同书范本(合同示范文本)
- 关于办公室数字化改造的决策与行动方案
- 2025年国内供货合同模板
- 关于纹绣的课件
- 服务业智能化客户服务与解决方案
- 2025混凝土合同内部经济承包责任书
- 2025年中国超市J公司特许经营合同范本
- 2025年个人之间的借款合同范本
- 2024年黑龙江哈尔滨市中考化学真题卷及答案解析
- 衡水中学学习计划
- 棋牌室消防应急预案
- 智能家居的智能门锁
- 《公园茶室设计》课件
- 结核病的防治健康讲座
- IATF16949体系推行计划(任务清晰版)
- 货物质量保证措施方案
- 悬臂吊施工方案
- TSHSPS 001-2024 临床试验协调员管理及能力评估规范上海
- (高清版)DB34∕T 1489-2020 建筑起重机械安全评估实施规程
评论
0/150
提交评论