双样本假设检验及区间估计课件_第1页
双样本假设检验及区间估计课件_第2页
双样本假设检验及区间估计课件_第3页
双样本假设检验及区间估计课件_第4页
双样本假设检验及区间估计课件_第5页
已阅读5页,还剩95页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章双样本假设检验及区间估计我们在掌握了单样本检验与估计的有关方法与原理之后,把视野投向双样本检验与估计是很自然的。双样本统计,除了有大样本、小样本之分外,根据抽样之不同,还可分为独立样本与配对样本。

独立样本,指双样本是在两个总体中相互独立地抽取的。配对样本,指只有一个总体,双样本是由于样本中的个体两两匹配成对而产生的。配对样本相互之间不独立。12/2/20221第十章双样本假设检验及区间估计我们在掌第一节两总体大样本假设检验

为了把单样本检验推广到能够比较两个样本的均值的检验,必须再一次运用中心极限定理。下面是一条由中心极限定理推广而来的重要定理:如果从和两个总体中分别抽取容量为n1和n2的独立随机样本,那么两个样本的均值差的抽样分布就是。与单样本的情况相同,在大样本的情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具有均值μ1和μ2以及方差和

的两个总体。当n1和n2逐渐变大时,的抽样分布像前面那样将接近正态分布。12/2/20222第一节两总体大样本假设检验为了把单样本1.大样本均值差检验

(1)零假设:(2)备择假设:单侧双侧或(3)否定域:单侧双侧(4)检验统计量(5)比较判定12/2/202231.大样本均值差检验11/30/202

[例]为了比较已婚妇女对婚后生活的态度是否因婚龄而有所差别,将已婚妇女按对婚后生活的态度分为“满意”和“不满意”两组。从满意组中随机抽取600名妇女,其平均婚龄为8.5年,标准差为2.3年;从不满意组抽出500名妇女,其平均婚龄为9.2年,标准差2.8年。试问在0.05显著性水平上两组是否存在显著性差异?

样本人数均值标准差满意组6008.52.3不满意组5009.22.812/2/20224[例]为了比较已婚妇女对婚后生活的态度是否因[解]据题意,“不满意”组的抽样结果为:=9.2年,S1=2.8年,n1=500;“满意”组的抽样结果为:=8.5年,S2=2.3年,n2=600。

H0:μ1―μ2=D0=0H1:μ1―μ2≠0计算检验统计量

确定否定域,因为α=0.05,因而有Zα/2=1.96<4.47因此否定零假设,即可以认为在0.05显著性水平上,婚龄对妇女婚后生活的态度是有影响的。同时我们看到,由于样本计算值Z=4.47远大于单侧Z0.05的临界值1.65,因此本题接受μ1―μ2>0的备择假设,即可以认为妇女婚龄长容易对婚后生活产生“不满意”。

12/2/20225[解]据题意,11/30/20222.大样本成数差检验

(1)零假设:(2)备择假设:单侧双侧或(3)否定域:单侧双侧(4)检验统计量其中:

为总体1的样本成数

为总体2的样本成数。12/2/202262.大样本成数差检验其中:当p1和p2未知,须用样本成数和进行估算时,分以下两种情况讨论:①若零假设中两总体成数的关系为,这时两总体可看作成数P相同的总体,它们的点估计值为

此时上式中检验统计量Z可简化为

②若零假设中两总体成数,那么它们的点估计值有

此时上式中检验统计量Z为(5)判定12/2/20227当p1和p2未知,须用样本成数[例]有一个大学生的随机样本,按照性格“外向”和“内向”,把他们分成两类。结果发现,新生中有73%属于“外向”类,四年级学生中有58%属于“外向”类。样本中新生有171名,四年级学生有117名。试问,在0.01水平上,两类学生有无显著性差异?外向内向四年级58%(117)42%一年级73%(171)27%12/2/20228[例]有一个大学生的随机样本,按照性格“外向”[解]据题意新生组的抽样结果为:

=0.73,=0.27,n1=171四年级学生组的抽样结果为:=0.58,=0.42,n2=117H0:p1―p2=D0=0H1:p1―p2=D0≠0计算检验统计量确定否定域因为α=0.01,因而有Zα/2=Z0.005=2.58<2.66因而否定零假设,即可以认为在0.01显著性水平上,两类 学生在性格上是有差异的。

12/2/20229[解]据题意11/30/20229第二节两总体小样本假设检验

与对单总体小样本假设检验一样,我们对两总体小样本假设检只讨论总体满足正态分布的情况。1.小样本均值差假设检验(1)当和已知时,小样本均值差检验,与上一节所述大样本总体均值差检验完全相同,这里不再赘述。12/2/202210第二节两总体小样本假设检验与对单总(2)和未知,但假定它们相等时,

关键是要解决

的算式。

现又因为σ未知,所以要用它的无偏估计量替代它。由于两个样本的方差基于不同的样本容量,因而可以用加权的方法求出σ的无偏估计量,得

注意,上式的分母上减2,是因为根据和计算S1和S2时,分别损失了一个自由度,一共损失了两个自由度,所以全部自由度的数目就成为(n1+n2―2)。于是有12/2/202211(2)和

这样,对小样本正态总体,和

未知,但σ

1=σ

2,其均值差的检验步骤如下:

(1)零假设:(2)备择假设:单侧双侧或(3)否定域:单侧双侧(4)检验统计量(5)比较判定12/2/202212这样,对小样本正态总体,和[例]为研究某地民族间家庭规模是否有所不同,各做如下独立随机抽样:民族A:12户,平均人口6.8人,标准差1.5人民族B:12户,平均人口5.3人,标准差0.9人问:能否认为A民族的家庭平均人口高于B民族的家庭平均人口(α=0.05)?(假定家庭平均人口服从正态分布,且方差相等)t=2.97

[例]某市对儿童体重情况进行调查,抽查8岁的女孩20人,平均体重22.2千克,标准差2.46千克;抽查8岁的男孩18人,平均体重21.3千克,标准差1.82千克。若男女儿童体重的总体方差相等,问在显著性水平5%上,该年龄男女儿童之体重有无显著差异?

12/2/202213[例]为研究某地民族间家庭规模是否有所不同,各[解]据题意,女孩组的抽样结果为:=22.2(千克),S1=2.46(千克),n1=20(人)男孩组的抽样结果为:=21.3(千克),S2=1.82(千克),n2=18(人)H0:μ1―μ2=D0=0H1:μ1―μ2≠0计算检验统计量

确定否定域因α=0.05,因而有t0.025(36)=2.028>1.24故不能否定H0,即可认为男女儿童平均体重无显著性差异。

12/2/202214[解]据题意,11/30/202214

(3)和未知,但不能假定它们相等

如果不能假定σ1=σ2

,那么就不能引进共同的σ简化,也不能计算σ的无偏估计量。现在简单的做法是用

估计

,用估计

,于是有[例]用上式重新求解前例题。[解]用上式,检验统计量的计算为

可以看出,求解用(10.8)式和(10.10)式,得出的结果差别不大。

12/2/202215(3)和2.小样本方差比检验

在实际研究中,除了要比较两总体的均值外,有时还需要比较两总体的方差。例如对农村家庭和城镇家庭进行比较,除了平均收入的比较外,还要用方差比较收入的不平均情况。此外,刚刚在小样本均值差的检验中曾谈到,当方差未知时,往往还假设两总体方差相等。因此,在总体方差未知的情况下,先进行方差比检验,对于均值差检

检验也是具有一定意义的。设两总体分别满足正态分布和。现从这两个总体中分别独立地各抽取一个随机样本,并具有容量n1,n2和方差,。根据第八章(8.22)式,对两总体样本方差的抽样分布分别有12/2/2022162.小样本方差比检验

在实际研究中,除了要比较两总体的

根据本书第八章第四节F分布中的(8.25)式有由于,所以简化后,检验方差比所用统计量为当零假设H0:σ1=σ2时,上式中的统计量又简化为12/2/202217根据本书第八章第四节F分布中的(8.25)

这样一来,小样本正态总体方差比检验的步骤有(1)零假设H0

:备择假设H1

:单侧双侧

H1

:H1

H1

:(2)检验统计量()()

()

单侧双侧12/2/202218这样一来,小样本正态总体方差比检验的步骤有(3)否定域(参见下图)单侧Fα(n1―1,n2―1),双侧Fα/2(n1―1,n2―1)

方差比检验,比起前面所介绍的检验有一个不同点,那就是无论是单侧检验还是双侧检验,F的临界值都只在右侧。其原因是我们总是把和中的较大者放在分子上,以便使用者掌握。因此有≥1或者≥112/2/202219(3)否定域(参见下图)11/30/202219

[例]为了研究男性青年和女性青年两身高总体的方差是否相等,分别作了独立随机抽样。对男性青年样本有n1=10,=30.8(厘米2);对女性青年样本有n2=8,=27.8(厘米2),试问在0.05水平上,男性青年身高的方差和女性青年身高的方差有无显著性差异?12/2/202220[例]为了研究男性青年和女性青年两身高总体的方差是

[解]据题意,对男性青年样本有n1=10,=30.8(厘米2)对女性青年样本有n2=8,=27.8(厘米2)

H0

:H1

计算检验统计量

确定否定域,因为α=0.05,Fα/2(n1―1,n2―1)=F0.025(9,7)=4.82>1.08因而不能否定零假设,即在0.05水平上,我们不能说男性青年身高的方差和女性青年身高的方差有显著性差异。

12/2/202221[解]据题意,11/30/202221第三节配对样本的假设检验配对样本,是两个样本的单位两两匹配成对,它实际上只能算作一个样本,也称关联样本。因此对它的检验,用均值差检验显然是不行的。因为2n个样本单位(每个样本n个)不是全部独立抽取的。而如果把每一配对当作一个单位,在符合其他必要的假定条件下,统计检验与单样本检验相差无几。12/2/202222第三节配对样本的假设检验配对样本,是两个1.单一实验组的假设检验

对于单一实验组这种“前—后”对比型配对样本的假设检验,我们的做法是,不用均值差检验,而是求出每一对观察数据的差,直接进行一对一的比较。如果采用“前测”“后测”两个总体无差异的零假设,也就是等于假定实验刺激无效。于是,问题就转化为每对观察数据差的均值μd=0的单样本假设检验了。求每一对观察值的差,直接进行一对一的比较。12/2/2022231.单一实验组的假设检验11/30/202223设配对样本的样本单位前测与后测的观察数据分别是X

0i与X

1i,其差记作di

di=X

1i―X

0i

如果假设两总体前测与后测无显著性差别,即μ1

=μ0或者。那么对取自这两个总体的配对大样本有12/2/202224设配对样本的样本单位前测与后测的观察数据分别

对于大样本,当二总体的方差未知时,可以用样本标准差来近似。

若为小样本则需用t分布,即对配对(小)样本而言,其均值差的抽样分布将服从于自由度为(n—1)的t分布。所以对单一实验组实验的假设检验,其检验统计量为

12/2/202225对于大样本,当二总体的方差未知时,可以用样本标准[例]随机地选择13个单位,放映一部描述吸烟有害于身体健康的影片,下表中的数字是各单位认为吸烟有害身体健康的职工的百分比,试在0.05显著性水平上检检验实验无效的零假设。12/2/202226[例]随机地选择13个单位,放映一部描述吸[解]零假设H0:μd=0

备择假设H1:μ1>μ0

根据前三式,并参照上表有

计算检验统计量确定否定域,因为α=0.05,并为单侧检验,因而有t

0.05(12)=1.782<2.76所以否定零假设,即说明该实验刺激有效。12/2/202227[解]零假设H0:μd=0

练习一:以下是经济体制改革后,某厂8个车间竞争性测量的比较。问改革后,竞争性有无增加?(取α=0.05)t=3.176

改革后8687569384937579改革前8079589177827466练习二:为了了解职工的企业认同感,根据男性1000人的抽样调查,其中有52人希望调换工作单位;而女性1000人的调查有23人希望调换工作,能否说明男性比女性更期望职业流动?(取α=0.05)12/2/202228练习一:以下是经济体制改革后,某厂8个11/2.一实验组与一控制组的假设检验单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于实验刺激。在社会现实生活进行的实际实验中,对象前测后测之间的变化,有时除了受到实验刺激外,还受到其他社会因素的作用。因而,配对样本的一实验组与一控制组之假设检验,要设法把实验变量的作用和额外变量的作用区分开来,然后就像对待单一实验组实验一样,把问题转化为零假设μd=0的单样本检验来处理。

12/2/2022292.一实验组与一控制组的假设检验11/30/202229在一实验组与一控制组的实验设计之中,对前测后测之间的变化,消除额外变量影响的基本做法如下:(1)前测:对实验组与控制组分别度量;(2)实验刺激:只对实验组实行实验刺激;(3)后测:对实验组与控制组分别度量;(4)计算消除了额外变量影响之后的di

后测实验组―前测实验组=前测后测差实验组

后测控制组―前测控制组=前测后测差控制组

实验效应di=前测后测差实验组―前测后测差控制组12/2/202230在一实验组与一控制组的实验设计之中,对前测后[例]假定实施一种新教学法有助于提高儿童的学习成绩,现将20名儿童两两匹配成对,分成一实验组与一控制组,然后对实验组实施新教学法两年,下表列示了控制组与实验组前测后测的所有10组数据,试在0.05显著性水平上检验实验无效的零假设。12/2/202231[例]假定实施一种新教学法有助于提高儿童的[解]零假设H0:μd=0,即“实验无效”

备择假设H1:μ1>μ0

根据前三式,并参照上表有

计算检验统计量确定否定域,因为α=0.05,并为单侧检验,因而有t

0.05(9)=1.833<2.13所以否定零假设,即说明该教学法有效。12/2/202232[解]零假设H0:μd=0,即“3.对实验设计与相关检验的评论

有了独立样本和非独立样本的认识,读者自然会提出什么时候使用配对样本以及什么时候不使用配对样本的问题。很显然,匹配样本损失了自由度,使用配对样本相当于减小了一半样本容量。这样做是不是得不偿失呢?答案是要看我们能否恰当地配对。在配对过程中,最好用掷硬币的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。从而使“对”内随机化。12/2/2022333.对实验设计与相关检验的评论11/30/20223第四节双样本区间估计

双样本区间估计和双样本假设检验的联系是很紧密的。双样本区间估计,即是为均值差或成数差设置置信区间的方法,这需要我们汇合单样本区间估计和双样本假设检验两方面的知识

1.

和已知,对均数差的区间估计

根据本章第一节中心极限定理的推论,既然两样本的均值差的抽样分布就是,那么对

统计量Z自然有

12/2/202234第四节双样本区间估计

对于给定的置信水平(1―α),以构造

的置信区间如下

同理考虑的置信区间,只需将上式中的

改为即可。

12/2/202235对于给定的置信水平(1―α),以[例]设甲乙两乡镇企业职工月收入总体分布的方差分别为=120(元2),=90(元2)。现从甲企业随机抽取20人,平均月收人为840元:从乙企业随机抽取10人,平均月收入为670元,试以95%置信水平估计两企业人均月收入差额之范围。12/2/202236[例]设甲乙两乡镇企业职工月收入总体分布[解]据题意,

甲企业的抽样结果为:=840(元),=120(元2),

n1=20(人)

乙企业的抽样结果为:=670(元),=90(元2),

n2=10(人)

由(1―α)=0.95,得Zα/2=1.96,代入前式有

得到在95%置信水平上,两企业人均收入之差额在162.4元到177.6元之间。

12/2/202237[解]据题意,

甲企业的抽样

对于大样本,和未知,可以用和替

代,然后用前式求出均值差的置信区间即可。

对于小样本,和未知,两样本均值差的抽样分布就不再服从Z分布,而是服从t分布了。此时对给定的置信水平(1―α),得之估计区间为

2.和未知,对均数差的区间估计

12/2/202238对于大样本,和未知,可以用

由上式可见,要解决小样本均值差区间估计问题,关键是要解决的算式问题,而如果能假设

,这个问题已经在本章第二节中解决了,即12/2/202239由上式可见,要解决小样本均值差区间估计问题,[例]某市对儿童体重情况进行调查,抽查8岁的女孩20人,平均体重22.2千克,标准差2.46千克;抽查8岁的男孩18人,平均体重21.3千克,标准差1.82千克。若男女儿童体重的总体方差相等,试在95%置信水平上,估计8岁男女儿童体重差额之范围。12/2/202240[例]某市对儿童体重情况进行调查,抽查8

[解]据题意,

女孩组的抽样结果为:=22.2(千克),S1=2.46(千克),n1=20(人)

男孩组的抽样结果为:=21.3(千克),S2=1.82(千克),n2=18(人)

代人前式得由(1―α)=0.95,得tα/2(n1+n2―2)=t0.025(36)=2.028,于是

[(22.2―21.3)―2.028×0.728,(22.2—21.3)+2.028×0.728)]

得在95%置信水平上8岁男女儿童体重之差额在―0.58千克到2.38千克之间。

12/2/202241[解]据题意,

女孩组的抽样结果为:

如果不能假设

,求算则要用下

式,即

[例]研究正常成年男女血液红细胞的平均数之差别,

抽查男子20人,计算得红细胞平均数465万/毫米3,样本

标准差为54.8万/毫米3;抽查女子24名,计算得红细胞

平均数422万/毫米3,样本标准差为49.2万/毫米3,试

以99%的置信水平,求正常成年男女红细胞平均数的差异

范围。

12/2/202242如

[解]据题意,

男性组抽查结果为:=465,S1=54.8,n1=20(人)

女性组抽查结果为:=422,S2=49.2,n2=24(人)

代人前式得由(1―α)=0.99,得tα/2(n1+n2―2)=t0.005(42)=2.698,于是

[(465―422)―2.698×16.2,(465—422)+2.698×16.2)]

得在99%置信水平上,正常成年男女红细胞平均数之差异范围在―0.7万/毫米3到86.7万/毫米3之间。

12/2/202243[解]据题意,

男性组抽查结果

3.大样本成数差的区间估计与单样本成数的区间估计一样,成数差区间估计可以被看作均值差的特例来处理(但它适用于各种量度层次)。即对给定的置信水平(1―α),得两总体成数差(p1―p2)之估计区间为

12/2/2022443.大样本成数差的区间估计11/30/202244当p1和p2未知,须用样本成数和进行估算,同时分以下两种情况讨论:

①若能假设,上式变为式中:

②若不能假设,上式变为

12/2/202245当p1和p2未知,须用样本成数[例]有一个大学生的随机样本,按照性格“外向”和“内向”,把他们分成两类。结果发现,新生中有73%属于“外向”类,四年级学生中有58%属于“外向”类。样本中新生有171名,四年级学生有117名。试在99%的置信水平上,求新生、老生性格“外向”的成数差的置信区间。12/2/202246[例]有一个大学生的随机样本,按照性格“

[解]据题意,

新生组的抽样结果为:=0.73,

=027,n1=171(人)

四年级学生组的抽样结果为:

=0.58,

=0.42,n2=117(人)

由(1―α)=0.99,得Zα/2=Z0.005=2.58,代入上式得

得在99%置信水平上,新生、老生性格“外向”的成数差的置信区间为(0.003,0.297)。

12/2/202247[解]据题意,

4.配对样本均值差的区间估计

配对样本均值差的区间估计与独立样本均值差的区间估计不同,它实质上是μd的单样本区间估计。

既然对统计量t有

对给定的置信水平(1―α),μd的区间估计是

12/2/2022484.配对样本均值差的区间估计

配对样本均值差的[例]在8名患者身上用A和B两种催眠药加以试验,增多睡眠小时数的数据如下表所示,试在95%的置信水平上,求μd的置信区间。12/2/202249[例]在8名患者身上用A和B两种催眠药加以试

[解]据(10.14)式和(10.15)式,计算过程参见上表,得

由(1―α)=0.95,得tα/2(n―1)=t0.025(7)=2.365,代入上式有

得在95%的置信水平上,两种催眼药平均药效之差μd的置信区间为1.15土0.97(小时),即0.18(小时)≤μd

≤2.12(小时)。

12/2/202250[解]据(10.14)式和(10.15)式第十章双样本假设检验及区间估计我们在掌握了单样本检验与估计的有关方法与原理之后,把视野投向双样本检验与估计是很自然的。双样本统计,除了有大样本、小样本之分外,根据抽样之不同,还可分为独立样本与配对样本。

独立样本,指双样本是在两个总体中相互独立地抽取的。配对样本,指只有一个总体,双样本是由于样本中的个体两两匹配成对而产生的。配对样本相互之间不独立。12/2/202251第十章双样本假设检验及区间估计我们在掌第一节两总体大样本假设检验

为了把单样本检验推广到能够比较两个样本的均值的检验,必须再一次运用中心极限定理。下面是一条由中心极限定理推广而来的重要定理:如果从和两个总体中分别抽取容量为n1和n2的独立随机样本,那么两个样本的均值差的抽样分布就是。与单样本的情况相同,在大样本的情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具有均值μ1和μ2以及方差和

的两个总体。当n1和n2逐渐变大时,的抽样分布像前面那样将接近正态分布。12/2/202252第一节两总体大样本假设检验为了把单样本1.大样本均值差检验

(1)零假设:(2)备择假设:单侧双侧或(3)否定域:单侧双侧(4)检验统计量(5)比较判定12/2/2022531.大样本均值差检验11/30/202

[例]为了比较已婚妇女对婚后生活的态度是否因婚龄而有所差别,将已婚妇女按对婚后生活的态度分为“满意”和“不满意”两组。从满意组中随机抽取600名妇女,其平均婚龄为8.5年,标准差为2.3年;从不满意组抽出500名妇女,其平均婚龄为9.2年,标准差2.8年。试问在0.05显著性水平上两组是否存在显著性差异?

样本人数均值标准差满意组6008.52.3不满意组5009.22.812/2/202254[例]为了比较已婚妇女对婚后生活的态度是否因[解]据题意,“不满意”组的抽样结果为:=9.2年,S1=2.8年,n1=500;“满意”组的抽样结果为:=8.5年,S2=2.3年,n2=600。

H0:μ1―μ2=D0=0H1:μ1―μ2≠0计算检验统计量

确定否定域,因为α=0.05,因而有Zα/2=1.96<4.47因此否定零假设,即可以认为在0.05显著性水平上,婚龄对妇女婚后生活的态度是有影响的。同时我们看到,由于样本计算值Z=4.47远大于单侧Z0.05的临界值1.65,因此本题接受μ1―μ2>0的备择假设,即可以认为妇女婚龄长容易对婚后生活产生“不满意”。

12/2/202255[解]据题意,11/30/20222.大样本成数差检验

(1)零假设:(2)备择假设:单侧双侧或(3)否定域:单侧双侧(4)检验统计量其中:

为总体1的样本成数

为总体2的样本成数。12/2/2022562.大样本成数差检验其中:当p1和p2未知,须用样本成数和进行估算时,分以下两种情况讨论:①若零假设中两总体成数的关系为,这时两总体可看作成数P相同的总体,它们的点估计值为

此时上式中检验统计量Z可简化为

②若零假设中两总体成数,那么它们的点估计值有

此时上式中检验统计量Z为(5)判定12/2/202257当p1和p2未知,须用样本成数[例]有一个大学生的随机样本,按照性格“外向”和“内向”,把他们分成两类。结果发现,新生中有73%属于“外向”类,四年级学生中有58%属于“外向”类。样本中新生有171名,四年级学生有117名。试问,在0.01水平上,两类学生有无显著性差异?外向内向四年级58%(117)42%一年级73%(171)27%12/2/202258[例]有一个大学生的随机样本,按照性格“外向”[解]据题意新生组的抽样结果为:

=0.73,=0.27,n1=171四年级学生组的抽样结果为:=0.58,=0.42,n2=117H0:p1―p2=D0=0H1:p1―p2=D0≠0计算检验统计量确定否定域因为α=0.01,因而有Zα/2=Z0.005=2.58<2.66因而否定零假设,即可以认为在0.01显著性水平上,两类 学生在性格上是有差异的。

12/2/202259[解]据题意11/30/20229第二节两总体小样本假设检验

与对单总体小样本假设检验一样,我们对两总体小样本假设检只讨论总体满足正态分布的情况。1.小样本均值差假设检验(1)当和已知时,小样本均值差检验,与上一节所述大样本总体均值差检验完全相同,这里不再赘述。12/2/202260第二节两总体小样本假设检验与对单总(2)和未知,但假定它们相等时,

关键是要解决

的算式。

现又因为σ未知,所以要用它的无偏估计量替代它。由于两个样本的方差基于不同的样本容量,因而可以用加权的方法求出σ的无偏估计量,得

注意,上式的分母上减2,是因为根据和计算S1和S2时,分别损失了一个自由度,一共损失了两个自由度,所以全部自由度的数目就成为(n1+n2―2)。于是有12/2/202261(2)和

这样,对小样本正态总体,和

未知,但σ

1=σ

2,其均值差的检验步骤如下:

(1)零假设:(2)备择假设:单侧双侧或(3)否定域:单侧双侧(4)检验统计量(5)比较判定12/2/202262这样,对小样本正态总体,和[例]为研究某地民族间家庭规模是否有所不同,各做如下独立随机抽样:民族A:12户,平均人口6.8人,标准差1.5人民族B:12户,平均人口5.3人,标准差0.9人问:能否认为A民族的家庭平均人口高于B民族的家庭平均人口(α=0.05)?(假定家庭平均人口服从正态分布,且方差相等)t=2.97

[例]某市对儿童体重情况进行调查,抽查8岁的女孩20人,平均体重22.2千克,标准差2.46千克;抽查8岁的男孩18人,平均体重21.3千克,标准差1.82千克。若男女儿童体重的总体方差相等,问在显著性水平5%上,该年龄男女儿童之体重有无显著差异?

12/2/202263[例]为研究某地民族间家庭规模是否有所不同,各[解]据题意,女孩组的抽样结果为:=22.2(千克),S1=2.46(千克),n1=20(人)男孩组的抽样结果为:=21.3(千克),S2=1.82(千克),n2=18(人)H0:μ1―μ2=D0=0H1:μ1―μ2≠0计算检验统计量

确定否定域因α=0.05,因而有t0.025(36)=2.028>1.24故不能否定H0,即可认为男女儿童平均体重无显著性差异。

12/2/202264[解]据题意,11/30/202214

(3)和未知,但不能假定它们相等

如果不能假定σ1=σ2

,那么就不能引进共同的σ简化,也不能计算σ的无偏估计量。现在简单的做法是用

估计

,用估计

,于是有[例]用上式重新求解前例题。[解]用上式,检验统计量的计算为

可以看出,求解用(10.8)式和(10.10)式,得出的结果差别不大。

12/2/202265(3)和2.小样本方差比检验

在实际研究中,除了要比较两总体的均值外,有时还需要比较两总体的方差。例如对农村家庭和城镇家庭进行比较,除了平均收入的比较外,还要用方差比较收入的不平均情况。此外,刚刚在小样本均值差的检验中曾谈到,当方差未知时,往往还假设两总体方差相等。因此,在总体方差未知的情况下,先进行方差比检验,对于均值差检

检验也是具有一定意义的。设两总体分别满足正态分布和。现从这两个总体中分别独立地各抽取一个随机样本,并具有容量n1,n2和方差,。根据第八章(8.22)式,对两总体样本方差的抽样分布分别有12/2/2022662.小样本方差比检验

在实际研究中,除了要比较两总体的

根据本书第八章第四节F分布中的(8.25)式有由于,所以简化后,检验方差比所用统计量为当零假设H0:σ1=σ2时,上式中的统计量又简化为12/2/202267根据本书第八章第四节F分布中的(8.25)

这样一来,小样本正态总体方差比检验的步骤有(1)零假设H0

:备择假设H1

:单侧双侧

H1

:H1

H1

:(2)检验统计量()()

()

单侧双侧12/2/202268这样一来,小样本正态总体方差比检验的步骤有(3)否定域(参见下图)单侧Fα(n1―1,n2―1),双侧Fα/2(n1―1,n2―1)

方差比检验,比起前面所介绍的检验有一个不同点,那就是无论是单侧检验还是双侧检验,F的临界值都只在右侧。其原因是我们总是把和中的较大者放在分子上,以便使用者掌握。因此有≥1或者≥112/2/202269(3)否定域(参见下图)11/30/202219

[例]为了研究男性青年和女性青年两身高总体的方差是否相等,分别作了独立随机抽样。对男性青年样本有n1=10,=30.8(厘米2);对女性青年样本有n2=8,=27.8(厘米2),试问在0.05水平上,男性青年身高的方差和女性青年身高的方差有无显著性差异?12/2/202270[例]为了研究男性青年和女性青年两身高总体的方差是

[解]据题意,对男性青年样本有n1=10,=30.8(厘米2)对女性青年样本有n2=8,=27.8(厘米2)

H0

:H1

计算检验统计量

确定否定域,因为α=0.05,Fα/2(n1―1,n2―1)=F0.025(9,7)=4.82>1.08因而不能否定零假设,即在0.05水平上,我们不能说男性青年身高的方差和女性青年身高的方差有显著性差异。

12/2/202271[解]据题意,11/30/202221第三节配对样本的假设检验配对样本,是两个样本的单位两两匹配成对,它实际上只能算作一个样本,也称关联样本。因此对它的检验,用均值差检验显然是不行的。因为2n个样本单位(每个样本n个)不是全部独立抽取的。而如果把每一配对当作一个单位,在符合其他必要的假定条件下,统计检验与单样本检验相差无几。12/2/202272第三节配对样本的假设检验配对样本,是两个1.单一实验组的假设检验

对于单一实验组这种“前—后”对比型配对样本的假设检验,我们的做法是,不用均值差检验,而是求出每一对观察数据的差,直接进行一对一的比较。如果采用“前测”“后测”两个总体无差异的零假设,也就是等于假定实验刺激无效。于是,问题就转化为每对观察数据差的均值μd=0的单样本假设检验了。求每一对观察值的差,直接进行一对一的比较。12/2/2022731.单一实验组的假设检验11/30/202223设配对样本的样本单位前测与后测的观察数据分别是X

0i与X

1i,其差记作di

di=X

1i―X

0i

如果假设两总体前测与后测无显著性差别,即μ1

=μ0或者。那么对取自这两个总体的配对大样本有12/2/202274设配对样本的样本单位前测与后测的观察数据分别

对于大样本,当二总体的方差未知时,可以用样本标准差来近似。

若为小样本则需用t分布,即对配对(小)样本而言,其均值差的抽样分布将服从于自由度为(n—1)的t分布。所以对单一实验组实验的假设检验,其检验统计量为

12/2/202275对于大样本,当二总体的方差未知时,可以用样本标准[例]随机地选择13个单位,放映一部描述吸烟有害于身体健康的影片,下表中的数字是各单位认为吸烟有害身体健康的职工的百分比,试在0.05显著性水平上检检验实验无效的零假设。12/2/202276[例]随机地选择13个单位,放映一部描述吸[解]零假设H0:μd=0

备择假设H1:μ1>μ0

根据前三式,并参照上表有

计算检验统计量确定否定域,因为α=0.05,并为单侧检验,因而有t

0.05(12)=1.782<2.76所以否定零假设,即说明该实验刺激有效。12/2/202277[解]零假设H0:μd=0

练习一:以下是经济体制改革后,某厂8个车间竞争性测量的比较。问改革后,竞争性有无增加?(取α=0.05)t=3.176

改革后8687569384937579改革前8079589177827466练习二:为了了解职工的企业认同感,根据男性1000人的抽样调查,其中有52人希望调换工作单位;而女性1000人的调查有23人希望调换工作,能否说明男性比女性更期望职业流动?(取α=0.05)12/2/202278练习一:以下是经济体制改革后,某厂8个11/2.一实验组与一控制组的假设检验单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于实验刺激。在社会现实生活进行的实际实验中,对象前测后测之间的变化,有时除了受到实验刺激外,还受到其他社会因素的作用。因而,配对样本的一实验组与一控制组之假设检验,要设法把实验变量的作用和额外变量的作用区分开来,然后就像对待单一实验组实验一样,把问题转化为零假设μd=0的单样本检验来处理。

12/2/2022792.一实验组与一控制组的假设检验11/30/202229在一实验组与一控制组的实验设计之中,对前测后测之间的变化,消除额外变量影响的基本做法如下:(1)前测:对实验组与控制组分别度量;(2)实验刺激:只对实验组实行实验刺激;(3)后测:对实验组与控制组分别度量;(4)计算消除了额外变量影响之后的di

后测实验组―前测实验组=前测后测差实验组

后测控制组―前测控制组=前测后测差控制组

实验效应di=前测后测差实验组―前测后测差控制组12/2/202280在一实验组与一控制组的实验设计之中,对前测后[例]假定实施一种新教学法有助于提高儿童的学习成绩,现将20名儿童两两匹配成对,分成一实验组与一控制组,然后对实验组实施新教学法两年,下表列示了控制组与实验组前测后测的所有10组数据,试在0.05显著性水平上检验实验无效的零假设。12/2/202281[例]假定实施一种新教学法有助于提高儿童的[解]零假设H0:μd=0,即“实验无效”

备择假设H1:μ1>μ0

根据前三式,并参照上表有

计算检验统计量确定否定域,因为α=0.05,并为单侧检验,因而有t

0.05(9)=1.833<2.13所以否定零假设,即说明该教学法有效。12/2/202282[解]零假设H0:μd=0,即“3.对实验设计与相关检验的评论

有了独立样本和非独立样本的认识,读者自然会提出什么时候使用配对样本以及什么时候不使用配对样本的问题。很显然,匹配样本损失了自由度,使用配对样本相当于减小了一半样本容量。这样做是不是得不偿失呢?答案是要看我们能否恰当地配对。在配对过程中,最好用掷硬币的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。从而使“对”内随机化。12/2/2022833.对实验设计与相关检验的评论11/30/20223第四节双样本区间估计

双样本区间估计和双样本假设检验的联系是很紧密的。双样本区间估计,即是为均值差或成数差设置置信区间的方法,这需要我们汇合单样本区间估计和双样本假设检验两方面的知识

1.

和已知,对均数差的区间估计

根据本章第一节中心极限定理的推论,既然两样本的均值差的抽样分布就是,那么对

统计量Z自然有

12/2/202284第四节双样本区间估计

对于给定的置信水平(1―α),以构造

的置信区间如下

同理考虑的置信区间,只需将上式中的

改为即可。

12/2/202285对于给定的置信水平(1―α),以[例]设甲乙两乡镇企业职工月收入总体分布的方差分别为=120(元2),=90(元2)。现从甲企业随机抽取20人,平均月收人为840元:从乙企业随机抽取10人,平均月收入为670元,试以95%置信水平估计两企业人均月收入差额之范围。12/2/202286[例]设甲乙两乡镇企业职工月收入总体分布[解]据题意,

甲企业的抽样结果为:=840(元),=120(元2),

n1=20(人)

乙企业的抽样结果为:=670(元),=90(元2),

n2=10(人)

由(1―α)=0.95,得Zα/2=1.96,代入前式有

得到在95%置信水平上,两企业人均收入之差额在162.4元到177.6元之间。

12/2/202287[解]据题意,

甲企业的抽样

对于大样本,和未知,可以用和替

代,然后用前式求出均值差的置信区间即可。

对于小样本,和未知,两样本均值差的抽样分布就不再服从Z分布,而是服从t分布了。此时对给定的置信水平(1―α),得之估计区间为

2.和未知,对均数差的区间估计

12/2/202288对于大样本,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论