




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
熵权法及改进的TOPSIS一、熵权法熵权法确定客观权重熵学理论最早产生于物理学家对热力学的研究,熵的概念最初描述的是一种单项流动、不可逆转的能量传递过程,随着思想和理论的不断深化和发展,后来逐步形成了热力学熵、统计熵、信息熵三种思路。美国数学家克劳德•艾尔伍德•香农ClaudeElwoodShannon)最先提出信息熵的概念,为信息论和数字通信奠定了基础。信息熵方法用来确定权重己经非常广泛地应用于工程技术、社会经济等各领域。由信息熵的基本原理可知,对于一个系统来说,信息和熵分别是其有序程度和无序程度的度量,二者的符号相反、绝对值相等。假设一个系统可能处于不同状态,每种状态出现的概率为P.(,T,,n)I则该系统的熵就定义为:E=咒PlnPii=1在决策中,决策者获得信息的多少是决策结果可靠性和精度的决定性因素之一,然而,在多属性决策过程中,往往可能出现属性权重大小与其所传达的有价值的信息多少不成正比的情况。例如:某一指标所占的权重在所有指标中最大,但在整个决策矩阵中,这一指标所有方案的数值却相差甚微,即这一指标所传递的有用信息较少。显然,这一最重要的指标在决策过程中所起的作用却很小,如果不对其属性权重进行适当的处理,必将会造成评价决策方案的失真。熵本身所具有的物理意义及特性决定其应用在多属性决策上是一个很理想的尺度。某项指标之间值的差距越大,区分度越高,所携带和传输的信息就越多,该指标的熵值就会越小,在总体评价中起到的作用越大;相反,某项指标之间值的差距越小,区分度越低,所携带和传输的信息就越少,该指标的熵值就会越大,在总体评价中起到的作用越小。因此,可采用计算偏差度的方法求出客观权重,再利用客观权重对专家评价出的主观权重进行修正,得出综合权重。与其他客观赋权方法相比,该方法不仅仅是建立在概率的基础之上,还以决策者预先确定的偏好系数为基础,把决策者的主观判断和待评价对象的固有信息有机地结合起来,实现了主观与客观的统一,得出的权值准确性更高。对m个方案、n个属性构成的决策矩阵,求解权重向量的基本步骤如下:计算在j属性下,第i个方案的贡献度p=二'栏aiji=1计算第j属性下各方案的贡献总量E=-k咒plnpi=1式中,常数k=♦,以保证0<E.<1。当某一属性各方案的贡献度接近于一致时,lnmjEj接近于1,当全部相等时,则该属性的权重为0,即可以不考虑该属性在决策中的作用。计算第j属性的差异性系数djd=\E计算各属性的权重w=-JJ乎djJ=1⑸得出所有属性的权重向量为W=(w1,w2,……,wn)。熵值法修正复试指标主观权重确定复试指标综合权重。使用计算得到的熵值权重向量wenW^,对主观权重向量wdmW^进行修正,得到最终的综合权重向量W。此外,为了使计算结果更加精确,本文引入权重系数0的概念,其含义为主观权重WDMW^在综合权重W中的比重。0值的大小取决于WDMW^与WENW^的肯德尔相关系数妇将肯德尔相关系数与划分为20个置信区间,对应0的取值如表1所列。肯德尔相关系数kd与权重系数0取值对应关系列表肯德以相美威数5J.仍U.U5-CI.IU...财UW必U9W.00权重系教打0.950.90...0.050F是,综合权重向量町为W=l.)=6•+(I-。)将权重向量附心,化得到标准权亟向量谖,其中二、标准的TOPSIS方法TOPSIS为逼近理想解的排序方法。正理想解,各个属性值都达到各候选方案种的最好的值。负理想解,各个属性值都达到各候选方案种的最差的值。评价步骤:步骤1:构建决策矩阵匕。步骤2:对决策矩阵根据属性进行规范化处理,消除量纲不同带来的影响。步骤3:构建权重值"可以通过AHP法、熵权法、模糊综合评价法等方法。步骤4:计算加权决策矩阵,七=七%步骤5:计算正负理想解max{r},j=1,,m;越大越优型指标S+=\1<z<nj一jmin{r},j=1,,m;越小越优型指标、1<i<n司min{r},j=1,・・・,m;越大越优型指标S-=J1<i<n司jmax{r},j=1,...,m;越小越优型指标I1<i<n司步骤6:计算各方案与正负理想解间的距离一般采用欧式距离i=1,i=1,…,nSd-=E(S-—r)2,i\:jijj=1步骤7:计算各方案与正理想解的相对贴近度i=1,…,n各方案与正理想解的相对贴近度门i“_Sd—门i-Sd++Sd—七.越大,决策方案越接近正理想解,方案越优。三、改进的TOPSIS法TOPSIS法的一般解法存在以下不足:对初始决策矩阵所有指标的规范化处理没有区别;事先确定的权重值往往是主观值;取评估指标的最大值和最小值作为正理想解和负理想解,当评估目标个数改变时需要重新计算,可能出现前后结果相互矛盾的逆排序问题;目标值与理想值二者间的欧氏距离无法和权重建立起联系等等。改进方法:
首先,利用熵权法和主观权重构造综合权重而j;其次,利用规范化矩阵和综合权重构造加权综合矩阵z广而j-七;再次,确定绝对理想解。本文中采用求绝对理想解的方法对传统理想点法进行改进可以很好地解决逆排序问题。z+=«1,j|0,jeTijez+=«1,j|0,jeTijeT21,0,jeTijeT21和0分别代表该指标最高和最低标准,Ti和气分别表示效益型属性和成本型属性。第i个方案到正负理想解的欧氏距离进行加权改进后的公式为Sd+=i尤w(z-z+)2,i-1,,njijjj-iSd-=^^w(z-z7)2,i-1,・・・,nj-i最后,各方案与正理想解的相对贴近四“_Sd-门i-Sd++Sd-"■越大,决策方案越接近正理想解,方案越优。四、实例分析方案U1u2u3u4u5u6u7u8u9u101#513834228193442#133454326170333#503633227180254#643833228190335#393632227180536#533632327180547#563835328191548#533835329191449#9038433291905410#6038332291904511#5938312291904412#57383322919045现有46个方案,10个属性的决策矩阵,主观权重为[0.20.20.050.050.050.150.10.10.050.05]。13#4438435291904514#6938312281905515#6238312281903416#6438533281905417#5836433271804418#7338433281904319#5438535291904420#6838332281904421#5538433291905522#4138312281903423#5438433291904424#7238312281904425#8336433291804526#6138433281802527#4736533271904428#3634342261814429#7738413292003530#5834333281804431#6436353281704432#3534322261805333#3236352291804534#3134322261803335#2636332251803336#6036252291905537#2738332281904538#5234453261705439#4134462271805440#5438332281753541#3734342261604342#3734443291604543#4432353261702544#2736332251604345#4230342201203346#59283222113033程序如下:clear;clc;x=[513834228193441334543261703350363322718025643833228190333936322271805353363232718054TOC\o"1-5"\h\z38353383539038433383323831238332443843569383126238312643853336433733843338535683833238433413831254384337238312833643338433473653334342773841334333643635335343223236352313432236332362523833252344533446254383323434237344434432353363323034228322x1=[];[m,n]=size(x)%规范化fori=1:nTOC\o"1-5"\h\z191541914429190542919045291904429190452919045190552819034281905418044190431904419044190551903419044190441804518025190441814420035180441704426180531804526180331803329190552819045170541805417535261604316045261702525160431203313033];end%熵值法确定权重的程序,w为求出的权重向量。这时会发现属性u8的权重特别的大。fort=1:ns(1,t)=0;forj=1:mif(x1(j,t)==0)p(1,t)=0;elsep(1,t)=x1(j,t)*log(x1(j,t));ends(1,t)=s(1,t)+p(1,t);endendk=(log(m))A(-1);e=-k*s;d=ones(1,n)-e;w=d/sum(d);%对权重进行修正,先验权重lam,得到修正后的权重w0lam=[0.20.20.050.050.050.150.10.10.050.05];%主观权重Ked=corr(w',lam','type','Kendall')%求肯德尔系数st=input('请输Ast的值:');%根据肯德尔系数输入权重系数staw1=lam*st+w*(1-st);%综合权重w0=w1/sum(w1);%归一化综合权重%规范化决策矩阵,得到规范化矩阵Yfori=1:m%x为规范化决策矩阵,全部为效益型指标,进行处理forj=1:ny(i,j)=(x(i,j)-min(x(:,j)))/(max(x(:,j))-min(x(:,j)));endend%加权规范化矩阵,得到加权后的规范化矩阵Zfori=1:mz(i,:)=y(i,:).*w0;end%计算加权评价矩阵MAX_V=ones(1,n)%绝对正理想解MIN_V=zeros(1,n)%绝对负理想解fori=1:mS_MAX(i)=(sum(((
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论