版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.30° B.45°C.60° D.90°2.已知向量,,若,则实数的值为()A.或 B.C. D.或33.已知,,且,则的最小值为()A.4 B.9C.10 D.124.将函数,且,下列说法错误的是()A.为偶函数 B.C.若在上单调递减,则的最大值为9 D.当时,在上有3个零点5.函数fxA.2π B.-πC.π D.π6.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.87.若角与终边相同,则一定有()A. B.C., D.,8.设,,则的结果为()A. B.C. D.9.若sinα=-,且α为第三象限的角,则cosα的值等于()A. B.C. D.10.设集合,,若对于函数,其定义域为,值域为,则这个函数的图象可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则____________12.函数的单调递增区间是___________.13.若“”是“”的必要条件,则的取值范围是________14.已知角的终边过点,求_________________.15.设,若函数在上单调递增,则的取值范围是A. B. C. D.16.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)求的值;(2)若向量满足,,求向量的坐标.18.已知函数的周期是.(1)求的单调递增区间;(2)求在上的最值及其对应的的值.19.已知函数;(1)求的定义域与最小正周期;(2)求在区间上的单调性与最值.20.已知函数,(为常数).(1)当时,判断在的单调性,并用定义证明;(2)若对任意,不等式恒成立,求的取值范围;(3)讨论零点的个数.21.已知函数(,且).(1)求的值,并证明不是奇函数;(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.注:设x为实数,表示不超过x的最大整数.参考数据:,,,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用中位线定理可得GE∥SA,则∠GEF为异面直线EF与SA所成的角,判断三角形为等腰直角三角形即可.【详解】取AC中点G,连接EG,GF,FC设棱长为2,则CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF为异面直线EF与SA所成的角∵EF=,GE=1,GF=1∴△GEF为等腰直角三角形,故∠GEF=45°故选:B.【点睛】求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.2、A【解析】先求的坐标,再由向量垂直数量积为0,利用坐标运算即可得解.【详解】由向量,,知.若,则,解得或-3.故选A.【点睛】本题主要考查了向量垂直的坐标表示,属于基础题.3、B【解析】将展开利用基本不等式即可求解.【详解】由,,且得,当且仅当即,时等号成立,的最小值为,故选:B.4、C【解析】先求得,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】,,所以,为偶函数,A选项正确.,B选项正确.,若在上单调递减,则,,由于,所以,所以的最大值为,的最大值为,C选项错误.当时,,,当时,,所以D选项正确.故选:C5、C【解析】由题意得ω=2,再代入三角函数的周期公式T=【详解】根据三角函数的周期公式T=2π函数fx=cos故选:C6、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题7、C【解析】根据终边相同角的表示方法判断【详解】角与终边相同,则,,只有C选项满足,故选:C8、D【解析】根据交集的定义计算可得;【详解】解:因为,,所以故选:D9、B【解析】先根据为第三象限角,可知,再根据平方关系,利用,可求的值【详解】解:由题意,为第三象限角,故选.【点睛】本题以三角函数为载体,考查同角三角函数的平方关系,解题时应注意判断三角函数的符号,属于基础题.10、D【解析】利用函数的概念逐一判断即可.【详解】对于A,函数的定义域为,不满足题意,故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【点睛】本题考查了函数的概念以及函数的定义域、值域,考查了基本知识的掌握情况,理解函数的概念是解题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,,考点:三角恒等变换12、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.13、【解析】根据题意解得:,得出,由此可得出实数的取值范围.【详解】根据题意解得:,由于“”是“”必要条件,则,.因此,实数的取值范围是:.故答案为:.14、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.15、D【解析】由于函数为奇函数,且在上单调递增,结合函数的图象可知该函数的半周期大于或等于,所以,所以选择D考点:三角函数的图象与性质16、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)7;(2).【解析】(1)先计算,再求模即可;(2)设,进而计算,,再根据垂直与共线的坐标关系求解即可.【详解】解:(1)因为向量,,所以,所以(2)设,,因为,,所以,解得所以18、(1);(2)当时,;当时,.【解析】(1)先由周期为求出,再根据,进行求解即可;(2)先求出,可得,进而求解即可【详解】(1)解:∵,∴,又∵,∴,∴,∵,,∴,,∴,,∴的单调递增区间为(2)解:∵∴,∴,∴,∴,∴,当时,,当,即时,【点睛】本题考查求正弦型函数的单调区间,考查正弦型函数的最值问题,属于基础题19、(1)定义域,;(2)单调递增:,单调递减:,最大值为1,最小值为;【解析】(1)简化原函数,结合定义域求最小正周期;(2)在给定区间上结合正弦曲线,求单调性与最值.试题解析:;(1)的定义域:,最小正周期;(2),即最大值为1,最小值为,单调递增:,单调递减:,20、(1)见解析;(2);(3)见解析.【解析】(1)利用函数的单调性的定义,即可证得函数的单调性,得到结论;(2)由得,转化为,设,利用二次函数的性质,即可求解.(3)把函数有个零点转化为方程有两个解,令,作的图像及直线图像,结合图象,即可求解,得到答案.【详解】(1)当时,且时,是单调递减的.证明:设,则又且,故当时,在上是单调递减的.(2)由得,变形为,即,设,令,则,由二次函数的性质,可得,所以,解得.(3)由有个零点可得有两个解,转化为方程有两个解,令,作的图像及直线图像有两个交点,由图像可得:i)当或,即或时,有个零点.ii)当或或时,由个零点;iii)当或时,有个零点.【点睛】本题主要考查了函数的单调性的判定,以及函数与方程的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球民用航空机翼行业调研及趋势分析报告
- 为他人贷款合同担保
- 叉车购销合同模板
- 2025物料购置合同管理操作规程
- 学校商铺租赁合同范本
- 提高组织和协调能力的培训
- 施工设计合同
- 商铺租赁合同范本简单
- 人才招聘中介服务合同模板
- 业主与开发商修路合同
- 2025年人民教育出版社有限公司招聘笔试参考题库含答案解析
- 康复医学治疗技术(士)复习题及答案
- 《血管性血友病》课件
- 2025年汽车加气站作业人员安全全国考试题库(含答案)
- 2024年司法考试完整真题及答案
- 高三日语一轮复习日语助词「に」和「を」的全部用法课件
- 烟叶复烤能源管理
- 食品安全管理员考试题库298题(含标准答案)
- 执业医师资格考试《临床执业医师》 考前 押题试卷绝密1 答案
- 2024年执业药师继续教育专业答案
- 2024年山东济宁初中学业水平考试地理试卷真题(含答案详解)
评论
0/150
提交评论