A佳经典联考2023届高一上数学期末达标检测试题含解析_第1页
A佳经典联考2023届高一上数学期末达标检测试题含解析_第2页
A佳经典联考2023届高一上数学期末达标检测试题含解析_第3页
A佳经典联考2023届高一上数学期末达标检测试题含解析_第4页
A佳经典联考2023届高一上数学期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.为了得到函数的图象,只需将余弦曲线上所有的点A.向右平移个单位 B.向左平移个单位C向右平移个单位 D.向左平移个单位2.计算2sin2105°-1的结果等于()A. B.C. D.3.已知函数是定义在上的偶函数,当时,,则A. B.C. D.4.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽,而将信噪比从1000提升至4000,则大约增加了()附:A.10% B.20%C.50% D.100%5.若,则为()A. B.C. D.6.已知,则的值为()A B.1C. D.7.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20138.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.49.若xlog34=1,则4x+4–x=A.1 B.2C. D.10.若且,则函数的图象一定过点()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限12.已知函数的最大值与最小值之差为,则______13.已知函数.则函数的最大值和最小值之积为______14.函数的单调增区间是__________15.已知函数,若函数有3个零点,则实数a的取值范围是_______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,且,(1)求,的值;(2),求的值17.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.18.已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.19.在中,,且与的夹角为,.(1)求的值;(2)若,,求的值.20.已知且是上的奇函数,且(1)求的解析式;(2)若不等式对恒成立,求取值范围;(3)把区间等分成份,记等分点的横坐标依次为,,设,记,是否存在正整数,使不等式有解?若存在,求出所有的值,若不存在,说明理由.21.已知tanα<0,(1)若求的值;(2)若求tanα的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】利用函数的图象变换规律,得出结论【详解】把余弦曲线上所有的点向右平行移动个单位长度,可得函数的图象,故选C【点睛】本题主要考查函数的图象变换规律,属于基础题2、D【解析】.选D3、D【解析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值【详解】因为是定义在上的偶函数,且当时,,所以,选择D【点睛】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解4、B【解析】根据题意,计算出值即可;【详解】当时,,当时,,因为所以将信噪比从1000提升至4000,则大约增加了20%,故选:B.【点睛】本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.5、A【解析】根据对数换底公式,结合指数函数与对数函数的单调性直接判断.【详解】由对数函数的单调性可知,即,且,,且,又,即,所以,又根据指数函数的单调性可得,所以,故选:A.6、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A7、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为8、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题9、D【解析】条件可化为x=log43,运用对数恒等式,即可【详解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故选D【点睛】本题考查对数性质的简单应用,属于基础题目10、C【解析】令求出定点的横坐标,即得解.【详解】解:令.当时,,所以函数的图象过点.故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、二【解析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号12、或.【解析】根据幂函数的性质,结合题意,分类讨论,利用单调性列出方程,即可求解.【详解】由题意,函数,当时,函数在上为单调递增函数,可得,解得;当时,显然不成立;当时,函数在上为单调递减函数,可得,解得,综上可得,或.故答案为:或.13、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8014、,【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:,,,由,计算得出,因此函数的单调递增区间为:,故答案为,.点睛:本题主要考查三角函数的单调性,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.15、(0,1]【解析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【点睛】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围17、(1),定义域为或;(2).【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.18、(1)A={0,1,2,3,4,5,6,7};(2)见解析.【解析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,xi∈M,i=1,2,3}.即可得到集合A;(Ⅱ)由于ai,bi∈M,i=1,2,…,n.an<bn,可得an-bn≤-1.由题意可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤-[1+q+…+qn-2+qn-1],再利用等比数列的前n项和公式即可得出试题解析:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}(2)证明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an<bn,可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤(q-1)+(q-1)q+…+(q-1)qn-2-qn-1=-qn-1=-1<0,所以s<t.19、(1);(2).【解析】(1)选取向量为基底,根据平面向量基本定理得,又,然后根据向量的数量积的运算量可得结果;(2)结合向量的线性运算可得,然后与对照后可得【详解】选取向量为基底(1)由已知得,,∴(2)由(1)得,又,∴【点睛】求向量数量积的方法(1)根据数量积的定义求解,解题时需要选择平面的基底,将向量统一用同一基底表示,然后根据数量积的运算量求解(2)建立平面直角坐标系,将向量用坐标表示,将数量积的问题转化为数的运算的问题求解20、(1);(2);(3)存在,正整数或2.【解析】(1)根据,,即可求出的值,从而可求函数的解析式;(2)根据函数的奇偶性和单调性由题意可得到恒成立,然后通过分类讨论,根据二次不等式恒成立问题的解决方法即可求出答案;(3)设等分点的横坐标为,.首先根据,可得到函数的图象关于点对称,从而可得到,;进而可求出;再根据,从而只需求即可.【小问1详解】∵是上的奇函数,∴,由,可得,,∵,∴,,所以.又,所以为奇函数.所以.【小问2详解】因为,所以在上单调递增,又为上的奇函数,所以由,得,所以,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论