




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章矢量分析1.1场的概念1.1.0对点、线、面、体积的再认识(补充)1.1.1矢性函数在二维空间或三维空间内的任一点P,它是一个既存在大小(或称为模)又有方向特性的量,故称为实数矢量,用黑体A表示,而白体A表示A的大小(即A的模)。若用几何图形表示,它是从该点出发画一条带有箭头的直线段,直线段的长度表示矢量A的模,箭头的指向表示该矢量A的方向。矢量一旦被赋予物理单位,便成为具有物理意义的矢量,如电场强度E、磁场强度H、速度v等等。若某一矢量的模和方向都保持不变,此矢量称为常矢量,如某物体所受到的重力。而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢量,如沿着某一曲线物体运动的速度v等。设t是一数性变量,A为变矢量,对于某一区间G[a,b]内的每一个数值t,A都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。记为而G为A的定义域。矢性函数A(t)在直角坐标系中的三个坐标分量都是变量t的函数,分别为Ax(t)、Ay(t)、Az(t),则矢性函数A
(t)也可用其坐标表示为其中ex、ey、ez为x轴、y轴、z轴正向单位矢量。同一矢量在不同坐标系下有不同的表达式!(见后)1.1.2标量场和矢量场如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。换句话说,在某一空间区域中,物理量的无穷集合表示一种场。如在教室中温度的分布确定了一个温度场,在空间电位的分布确定了一个电位场。场的一个重要的属性是它占有一定空间,而且在该空间域内,除有限个点和表面外,其物理量应是处处连续的。若该物理量与时间无关,则该场称为静态场;若该物理量与时间有关,则该场称为动态场或称为时变场。在研究物理系统中温度、压力、密度等在一定空间的分布状态时,数学上只需用一个代数变量来描述,这些代数变量(即标量函数)所确定的场称为标量场,如温度场T(x,y,z)、电位场φ(x,y,z)等。然而在许多物理系统中,其状态不仅需要确定其大小,同时还需确定它们的方向,这就需要用一个矢量来描述,因此称为矢量场,例如电场、磁场、流速场等等。
1.1.3矢量的加、减、点乘与叉乘(补充)
在标量场φ(M)中的一点M处,其方向为函数φ(M)在M点处变化率最大的方向,其模又恰好等于最大变化率的矢量G,称为标量场φ(M)在M点处的梯度。在直角坐标系中,梯度的表达式为:1.2标量场的梯度
数学上从定义可推得在不同坐标系下的表达式设c为一常数,u和v为数量场,很容易证明下面梯度运算法则的成立。
R为空间两点(x,y,z)与(x’,y’,z’)的距离
例1
矢量r=xex+yey+zez,证明:
证:因为所以*例2.
已知位于原点处的点电荷q在点M(x,y,z)处产生的电位为,其中矢径r为r=xex+yey+zey,且已知电场强度与电位的关系是E=-▽φ,求电场强度E。解:根据▽f(u)=f′(u)·▽
u的运算法则,1.3矢量场的通量和散度1.3.1矢量场的通量将曲面的一个面元用矢量dS来表示,其方向取为面元的法线方向,其大小为dS,即n是面元法线方向的单位矢量。n的指向数学约定有两种情况:对非闭合曲面,则选定封闭曲线L绕行的方向后,沿绕行方向按右手螺旋的拇指方向就是n的方向;对闭合曲面,面元法线方向约定向外。如图1-3所示;图1-3法线方向的取法将曲面S各面元上的A·dS相加,它表示矢量场A穿过整个曲面S的通量,也称为矢量A在曲面S上的面积分:如果曲面是一个封闭曲面,则1.3.2矢量场的散度称此极限为矢量场A在某点的散度,即散度的定义式为矢量场A的散度经推导,可表示为:性质:
数学上从定义可推得在不同坐标系下的表达式
散度定理记为定义:1.4矢量场的环量和旋度在力场中,某一质点沿着指定的曲线c运动时,力场所做的功可表示为力场F沿曲线c的线积分,即图1-5矢量场的环量1.4.2矢量场的旋度将上极限值定义为A的旋度(旋度值是矢量)在法线方向的投影,即:原始定义:
数学上从定义可推得在不同坐标系下的表达式,在直角坐标系下有:上式可用下行列式帮助记忆:可以证明,有下列恒等式:1.4.3斯托克斯定理此式称为斯托克斯定理或斯托克斯公式。它将矢量旋度的面积分变换成该矢量的线积分,或将矢量A的线积分转换为该矢量旋度的面积分。式中dS的方向与dL的方向成右手螺旋关系。例1-12
求矢量场A=x(z-y)ex+y(x-z)ey+z(y-x)ez在点M(1,0,1)处的旋度。解:矢量场A的旋度例1-13
在坐标原点处放置一点电荷q,在自由空间产生的电场强度为求自由空间任意点(r≠0)电场强度的旋度▽×E。解:1.5圆柱坐标系与球坐标系1.5.1圆柱坐标系图1-7圆柱坐标系同一矢量在不同坐标系下有各自的表达式1.5.2球面坐标系图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大一统的汉朝》统一国家的建立课件-2
- 坚果炒货采购合同范本
- 展会承办合同范本
- 美食城合同范本
- 2025教师资格考试高中生物标准预测试卷答案及解析6-10
- 路灯灯笼安装合同范本
- 《创建新集体》珍惜新起点课件-2
- 2025年上海市16区高三语文二模试题汇编之文言文一(学生版)
- “中国文化书院导师名作丛书”首辑十卷在京发布
- 2025年版个人房屋出租合同模板下载
- 江苏省2024年中职职教高考文化统考英语试卷
- 五金材料采购投标方案(技术方案)
- 疼痛的中医护理
- 2024年许昌职业技术学院单招职业技能测试题库及答案解析
- 中国能源建设集团投资有限公司社会招聘考试试题及答案
- 【地理】2023-2024学年人教版地理七年级下册 期中区域复习课件
- 向世界介绍悠久灿烂的中华传统文化-统编三下第三单元整体设计教案
- 人教版七年级数学下册 第七章 平面直角坐标系小结与复习(课件)
- WizdomCloudUrban-EP-RM-013-市政综合监管平台用户操作手册
- 安琪酵母生产工艺
- 2024近零碳园区建设路径研究报告
评论
0/150
提交评论