![中考数学二次函数总复习公开课(课件)_第1页](http://file4.renrendoc.com/view/32808bbcfab60580dbf145483e089704/32808bbcfab60580dbf145483e0897041.gif)
![中考数学二次函数总复习公开课(课件)_第2页](http://file4.renrendoc.com/view/32808bbcfab60580dbf145483e089704/32808bbcfab60580dbf145483e0897042.gif)
![中考数学二次函数总复习公开课(课件)_第3页](http://file4.renrendoc.com/view/32808bbcfab60580dbf145483e089704/32808bbcfab60580dbf145483e0897043.gif)
![中考数学二次函数总复习公开课(课件)_第4页](http://file4.renrendoc.com/view/32808bbcfab60580dbf145483e089704/32808bbcfab60580dbf145483e0897044.gif)
![中考数学二次函数总复习公开课(课件)_第5页](http://file4.renrendoc.com/view/32808bbcfab60580dbf145483e089704/32808bbcfab60580dbf145483e0897045.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考语录
中考是人生的第一个十字路口,车辆很多,但要勇敢地穿过去。中考语录中考是人生的第一个十字路口,车辆很多,但要勇敢地复习:二次函数复习:二次函数中考数学二次函数总复习公开课(课件)二次函数定义注意:1.自变量的最高次数是2。2.二次项的系数a≠0。3.二次函数解析式必须是整式。二次函数定义注意:1.自变量的最高次数是2。2.二次项的
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式:(1)y=ax²(a≠0,b=0,c=0,).(2)y=ax²+c(a≠0,b=0,c≠0).(3)y=ax²+bx(a≠0,b≠0,c=0).
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同
下列函数中哪些是一次函数,哪些是二次函数?巩固一下吧!下列函数中哪些是一次函数,哪些是二次函数?巩固一下吧!2,函数当m取何值时,(1)它是二次函数?(2)它是反比例函数?(1)若是二次函数,则且∴当时,是二次函数。(2)若是反比例函数,则且∴当时,是反比例函数。2,函数y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)(x-x2)二次函数的三种解析式y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)y=ax2y=ax2+k
y=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移结论:一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同。小结:各种形式的二次函数的关系y=ax2y=ax2+ky=a(x–h1、一般二次函数y=ax2+bx+c(a≠0)的图象特点和函数性质返回主页前进(1)是一条抛物线;(2)对称轴是:x=-(3)顶点坐标是:(-,)(4)开口方向:a>0时,开口向上;a<0时,开口向下.2ab4a4ac-b22ab1、一般二次函数y=ax2+bx+c(a≠0)的图象特点和函(1)a>0时,对称轴左侧(x<-),函数值y随x的增大而减小
;对称轴右侧(x>-),函数值y随x的增大而增大。
a<0时,对称轴左侧(x<-),函数值y随x的增大而增大;对称轴右侧(x>-),函数值y随x的增大而减小。(2)a>0时,y最小=a<0时,y最大=2ab2ab2ab2ab4a4ac-b24a4ac-b2(二)函数性质:返回目录2ab2ab2ab2ab4a4ac-b24a4ac-b2(二二次函数y=a(x-h)2+k的图象和性质抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2+k(a>0)y=a(x-h)2+k(a<0)(h,k)(h,k)直线x=h直线x=h由h和k的符号确定由h和k的符号确定向上向下当x=h时,最小值为k.当x=h时,最大值为k.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.
在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.
二次函数y=a(x-h)2+k的图象和性质抛物线顶点坐标对称xy0a<0(1)a确定抛物线的开口方向:a、b、c、△、的符号与图像的关系a>0x0xy0
(2)c确定抛物线与y轴的交点位置:c>0x0•(0,c)c=0xy0•(0,0)c<0xy0•(0,c)xy0a<0(1)a确定抛物线的开口方向:a、b、c、(3)a、b确定对称轴的位置:
xy0x=-b2aab>0x=-b2aab=0xy0x=-b2aab<0xy0x=-b2axy0•(x,0)(3)a、b确定对称轴的位置:xy0•(x1,0)•(x2,0)Δ>0Δ=0Δ<0(4)Δ确定抛物线与x轴的交点个数:xy0•xy0•(x,0)xy0•(x1,0)•(x2,0)Δ>0Δ=0Δ<0二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0二次函数y=ax2+bx+c的图象和x轴交点有三种情况:二次1、抛物线y=ax2+bx+c关于x轴对称的抛物线的解析式为y=-ax2-bx-c2、抛物线y=ax2+bx+c关于y轴对称的抛物线的解析式为y=ax2-bx+c思考:
求抛物线Y=X2-2X+3关于X轴对称的抛物线的解析式,关于Y轴的抛物线的解析式小结1、抛物线y=ax2+bx+c关于x轴对称的抛物线的解析式二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0二次函数y=ax2+bx+c的图象和x轴交点有三种情况:二次(1)一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)小结(2)抛物线Y=ax2+bx+c与X轴的交点坐标是(X1,0)(X2,0),则一元二次方程ax2+bx+c=0的两根为X1,X2X1+X2=X1X2=(1)一元二次方程ax2+bx+c=0的两个根为x1题型分析:(一)抛物线与x轴、y轴的交点及所构成的面积例1:填空:(1)抛物线y=x2-3x+2与y轴的交点坐标是____________,与x轴的交点坐标是____________;(2)抛物线y=-2x2+5x-3与y轴的交点坐标是____________,与x轴的交点坐标是____________.
(0,2)(1,0)和(2,0)(0,-3)(1,0)和(,0)23题型分析:(0,2)(1,0)和(2,0)(0,-3)(1,例2:已知抛物线y=x2-2x-8,
(1)求证:该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积。(1)证明:∵△=22-4×(-8)=36>0∴该抛物线与x轴一定有两个交点(2)解:∵抛物线与x轴相交时x2-2x-8=0解方程得:x1=4,x2=-2∴AB=4-(-2)=6而P点坐标是(1,-9)∴S△ABC=27xyABP例2:已知抛物线y=x2-2x-8,
(1)求证:该抛物线与xyOAxyOBxyOCxyOD
例3:在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为(二)根据函数性质判定函数图象之间的位置关系答案:BxyOAxyOBxyOCxyOD例3:在同一直角坐标系中,
例4、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x(三)根据函数性质求函数解析式例4、已知二次函数y=ax2+bx+c的最大值例5:
已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大
(小)值,这个最大(小)值是多少?(6)x为何值时,y<0?x为何值时,y>0?1232解:(1)∵a=—>0
∴抛物线的开口向上
∵y=—(x2+2x+1)-2=—(x+1)2-2∴对称轴x=-1,顶点坐标M(-1,-2)121212前进
(2)由x=0,得y=--—抛物线与y轴的交点C(0,--—)
由y=0,得—x2+x-—=0x1=-3x2=1
与x轴交点A(-3,0)B(1,0)32323212解0x(3)④连线①画对称轴x=-1②确定顶点•(-1,-2)••(0,-–)③确定与坐标轴的交点及对称点••(-3,0)(1,0)32解0•M(-1,-2)••C(0,-–)••A(-3,0)B(1,0)32yxD
:(4)由对称性可知MA=MB=√22+22=2√2AB=|x1-x2|=4∴ΔMAB的周长=2MA+AB=2√2×2+4=4√2+4ΔMAB的面积=—AB×MD=—×4×2=41212前进解解0xx=-1••(0,-–)••(-3,0)(1,0)32:(5)•(-1,-2)当x=-1时,y有最小值为y最小值=-2当x≤-1时,y随x的增大而减小;前进解:0•(-1,-2)••(0,-–)••(-3,0)(1,0)32yx由图象可知(6)
当x<-3或x>1时,y>0当-3<x<1时,y<0例5:已知二次函数y=—x2+x-—1巩固练习:1、填空:(1)二次函数y=x2-x-6的图象顶点坐标是___________对称轴是_________。(2)抛物线y=-2x2+4x与x轴的交点坐标是___________(3)已知函数y=—x2-x-4,当函数值y随x的增大而减小时,x的取值范围是___________(4)二次函数y=mx2-3x+2m-m2的图象经过原点,则m=____。12(—,-—)125
24x=—12(0,0)(2,0)x<12巩固练习:1、填空:12(—,-—)12524x=—12(2.选择抛物线y=x2-4x+3的对称轴是_____________.A直线x=1B直线x=-1C直线x=2D直线x=-2(2)抛物线y=3x2-1的________________A开口向上,有最高点B开口向上,有最低点C开口向下,有最高点D开口向下,有最低点(3)若y=ax2+bx+c(a0)与轴交于点A(2,0),B(4,0),
则对称轴是_______A直线x=2B直线x=4C直线x=3D直线x=-3(4)若y=ax2+bx+c(a0)与轴交于点A(2,m),B(4,m),
则对称轴是_______A直线x=3B直线x=4C直线x=-3D直线x=2cBCA2.选择cBCA3、解答题:已知二次函数的图象的顶点坐标为(-2,-3),且图象过点(-3,-2)。
(1)求此二次函数的解析式;
(2)设此二次函数的图象与x轴交于A,B两点,O为坐标原点,求线段OA,OB的长度之和。3、解答题:能力训练1、
二次函数的图象如图所示,则在下列各不等式中成立的个数是____________1-10xy①abc<0②a+b+c<0③a+c>b④2a+b=0⑤Δ=b-4ac>0能力训练1、二次函数的图象如图所示,则在下2、已知二次函数y=ax2-5x+c的图象如图。(1)、当x为何值时,y随x的增大而增大;(2)、当x为何值时,y<0。yOx(3)、求它的解析式和顶点坐标;2、已知二次函数y=ax2-5x+c的图象如图。(1)、当x3、已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8)。(1)求这个二次函数的解析式;(2)写出它的对称轴和顶点坐标。3、已知一个二次函数的图象经过点(0,0),(1,﹣3),(基础练习:1.不与x轴相交的抛物线是()Ay=2x2–3By=-2x2+3Cy=-x2–3xDy=-2(x+1)2-32.若抛物线y=ax2+bx+c,当a>0,c<0时,图象与x轴交点情况是()A无交点B只有一个交点C有两个交点D不能确定DC基础练习:1.不与x轴相交的抛物线是()2.若抛物线y3.如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线y=x2-2x+m与x轴有____个交点.4.已知抛物线y=x2–8x+c的顶点在x轴上,则c=____.11163.如果关于x的一元二次方程x2-2x+m=0有两个相等的中考语录
中考是人生的第一个十字路口,车辆很多,但要勇敢地穿过去。中考语录中考是人生的第一个十字路口,车辆很多,但要勇敢地复习:二次函数复习:二次函数中考数学二次函数总复习公开课(课件)二次函数定义注意:1.自变量的最高次数是2。2.二次项的系数a≠0。3.二次函数解析式必须是整式。二次函数定义注意:1.自变量的最高次数是2。2.二次项的
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式:(1)y=ax²(a≠0,b=0,c=0,).(2)y=ax²+c(a≠0,b=0,c≠0).(3)y=ax²+bx(a≠0,b≠0,c=0).
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同
下列函数中哪些是一次函数,哪些是二次函数?巩固一下吧!下列函数中哪些是一次函数,哪些是二次函数?巩固一下吧!2,函数当m取何值时,(1)它是二次函数?(2)它是反比例函数?(1)若是二次函数,则且∴当时,是二次函数。(2)若是反比例函数,则且∴当时,是反比例函数。2,函数y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)(x-x2)二次函数的三种解析式y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)y=ax2y=ax2+k
y=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移结论:一般地,抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同。小结:各种形式的二次函数的关系y=ax2y=ax2+ky=a(x–h1、一般二次函数y=ax2+bx+c(a≠0)的图象特点和函数性质返回主页前进(1)是一条抛物线;(2)对称轴是:x=-(3)顶点坐标是:(-,)(4)开口方向:a>0时,开口向上;a<0时,开口向下.2ab4a4ac-b22ab1、一般二次函数y=ax2+bx+c(a≠0)的图象特点和函(1)a>0时,对称轴左侧(x<-),函数值y随x的增大而减小
;对称轴右侧(x>-),函数值y随x的增大而增大。
a<0时,对称轴左侧(x<-),函数值y随x的增大而增大;对称轴右侧(x>-),函数值y随x的增大而减小。(2)a>0时,y最小=a<0时,y最大=2ab2ab2ab2ab4a4ac-b24a4ac-b2(二)函数性质:返回目录2ab2ab2ab2ab4a4ac-b24a4ac-b2(二二次函数y=a(x-h)2+k的图象和性质抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2+k(a>0)y=a(x-h)2+k(a<0)(h,k)(h,k)直线x=h直线x=h由h和k的符号确定由h和k的符号确定向上向下当x=h时,最小值为k.当x=h时,最大值为k.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.
在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.
二次函数y=a(x-h)2+k的图象和性质抛物线顶点坐标对称xy0a<0(1)a确定抛物线的开口方向:a、b、c、△、的符号与图像的关系a>0x0xy0
(2)c确定抛物线与y轴的交点位置:c>0x0•(0,c)c=0xy0•(0,0)c<0xy0•(0,c)xy0a<0(1)a确定抛物线的开口方向:a、b、c、(3)a、b确定对称轴的位置:
xy0x=-b2aab>0x=-b2aab=0xy0x=-b2aab<0xy0x=-b2axy0•(x,0)(3)a、b确定对称轴的位置:xy0•(x1,0)•(x2,0)Δ>0Δ=0Δ<0(4)Δ确定抛物线与x轴的交点个数:xy0•xy0•(x,0)xy0•(x1,0)•(x2,0)Δ>0Δ=0Δ<0二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0二次函数y=ax2+bx+c的图象和x轴交点有三种情况:二次1、抛物线y=ax2+bx+c关于x轴对称的抛物线的解析式为y=-ax2-bx-c2、抛物线y=ax2+bx+c关于y轴对称的抛物线的解析式为y=ax2-bx+c思考:
求抛物线Y=X2-2X+3关于X轴对称的抛物线的解析式,关于Y轴的抛物线的解析式小结1、抛物线y=ax2+bx+c关于x轴对称的抛物线的解析式二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0二次函数y=ax2+bx+c的图象和x轴交点有三种情况:二次(1)一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)小结(2)抛物线Y=ax2+bx+c与X轴的交点坐标是(X1,0)(X2,0),则一元二次方程ax2+bx+c=0的两根为X1,X2X1+X2=X1X2=(1)一元二次方程ax2+bx+c=0的两个根为x1题型分析:(一)抛物线与x轴、y轴的交点及所构成的面积例1:填空:(1)抛物线y=x2-3x+2与y轴的交点坐标是____________,与x轴的交点坐标是____________;(2)抛物线y=-2x2+5x-3与y轴的交点坐标是____________,与x轴的交点坐标是____________.
(0,2)(1,0)和(2,0)(0,-3)(1,0)和(,0)23题型分析:(0,2)(1,0)和(2,0)(0,-3)(1,例2:已知抛物线y=x2-2x-8,
(1)求证:该抛物线与x轴一定有两个交点;
(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积。(1)证明:∵△=22-4×(-8)=36>0∴该抛物线与x轴一定有两个交点(2)解:∵抛物线与x轴相交时x2-2x-8=0解方程得:x1=4,x2=-2∴AB=4-(-2)=6而P点坐标是(1,-9)∴S△ABC=27xyABP例2:已知抛物线y=x2-2x-8,
(1)求证:该抛物线与xyOAxyOBxyOCxyOD
例3:在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为(二)根据函数性质判定函数图象之间的位置关系答案:BxyOAxyOBxyOCxyOD例3:在同一直角坐标系中,
例4、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x(三)根据函数性质求函数解析式例4、已知二次函数y=ax2+bx+c的最大值例5:
已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大
(小)值,这个最大(小)值是多少?(6)x为何值时,y<0?x为何值时,y>0?1232解:(1)∵a=—>0
∴抛物线的开口向上
∵y=—(x2+2x+1)-2=—(x+1)2-2∴对称轴x=-1,顶点坐标M(-1,-2)121212前进
(2)由x=0,得y=--—抛物线与y轴的交点C(0,--—)
由y=0,得—x2+x-—=0x1=-3x2=1
与x轴交点A(-3,0)B(1,0)32323212解0x(3)④连线①画对称轴x=-1②确定顶点•(-1,-2)••(0,-–)③确定与坐标轴的交点及对称点••(-3,0)(1,0)32解0•M(-1,-2)••C(0,-–)••A(-3,0)B(1,0)32yxD
:(4)由对称性可知MA=MB=√22+22=2√2AB=|x1-x2|=4∴ΔMAB的周长=2MA+AB=2√2×2+4=4√2+4ΔMAB的面积=—AB×MD=—×4×2=41212前进解解0xx=-1••(0,-–)••(-3,0)(1,0)32:(5)•(-1,-2)当x=-1时,y有最小值为y最小值=-2当x≤-1时,y随x的增大而减小;前进解:0•(-1,-2)••(0,-–)••(-3,0)(1,0)32yx由图象可知(6)
当x<-3或x>1时,y>0当-3<x<1时,y<0例5:已知二次函数y=—x2+x-—1巩固练习:1、填空:(1)二次函数y=x2-x-6的图象顶点坐标是___________对称轴是_________。(2)抛物线y=-2x2+4x与x轴的交点坐标是___________(3)已知函数y=—x2-x-4,当函数值y随x的增大而减小时,x的取值范围是___________(4)二次函数y=mx2-3x+2m-m2的图象经过原点,则m=____。12(—,-—)125
24x=—12(0,0)(2,0)x<12巩固练习:1、填空:12(—,-—)12524x=—12(2.选择抛物线y=x2-4x+3的对称轴是_____________.A直线x=1B直线x=-1C直线x=2D直线x=-2(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球颜料和染料喷墨标签打印机行业调研及趋势分析报告
- 2025年全球及中国跑道人造草坪行业头部企业市场占有率及排名调研报告
- 2025-2030全球汽车内饰材料燃烧试验机行业调研及趋势分析报告
- 2025-2030全球大型球轴承(外径尺寸在200mm以上)行业调研及趋势分析报告
- 2025-2030全球住宅用窗户防虫网行业调研及趋势分析报告
- 2025年全球及中国商用储水式电热水器行业头部企业市场占有率及排名调研报告
- 2025-2030全球汽车空调风门执行器行业调研及趋势分析报告
- 2025年全球及中国半导体高压电源行业头部企业市场占有率及排名调研报告
- 幼儿绘本讲述与演绎幼儿绘本的选择讲解
- 2025农村房屋赠与合同书
- 2024年全国职业院校技能大赛高职组(研学旅行赛项)考试题库(含答案)
- 十八项核心制度
- 2025社保政策培训
- 电器仪表人员培训课件
- 2025年中小学春节安全教育主题班会课件
- 2023年工程制图习题集
- 计量经济学练习题
- 2025年全国高考体育单招考试模拟政治试卷试题(含答案详解)
- 传统春节习俗
- 反走私课件完整版本
- 四年级下册数学知识点总结
评论
0/150
提交评论