二项分布经典例题+练习题_第1页
二项分布经典例题+练习题_第2页
二项分布经典例题+练习题_第3页
二项分布经典例题+练习题_第4页
二项分布经典例题+练习题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.z.二项分布1.次独立重复试验一般地,由次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即与,每次试验中。我们将这样的试验称为次独立重复试验,也称为伯努利试验。〔1〕独立重复试验满足的条件第一:每次试验是在同样条件下进展的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。〔2〕次独立重复试验中事件恰好发生次的概率。2.二项分布假设随机变量的分布列为,其中则称服从参数为的二项分布,记作。1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数的概率分布。2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)设为这名学生在途中遇到红灯的次数,求的分布列;(2)设为这名学生在首次停车前经过的路口数,求的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.3.甲乙两人各进展3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.〔1〕记甲击中目标的此时为,求的分布列及数学期望;〔2〕求乙至多击中目标2次的概率;〔3〕求甲恰好比乙多击中目标2次的概率.【稳固练习】1.箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的时机均等)3个球,记随机变量*为取出3球所得分数之和.(Ⅰ)求*的分布列;(Ⅱ)求*的数学期望E(*).2甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮完毕.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮完毕时甲的投篮次数的分布列与期望3.设篮球队与进展比赛,每场比赛均有一队胜,假设有一队胜场则比赛宣告完毕,假定在每场比赛中获胜的概率都是,试求需要比赛场数的期望.3.电视传媒公司为了了解*地区电视观众对*类体育节目的收视情况,随机抽取了100名观众进展调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为"体育迷〞.(Ⅰ)根据条件完成下面的列联表,并据此资料你是否认为"体育迷〞与性别有关"(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的"体育迷〞人数为*.假设每次抽取的结果是相互独立的,求*的分布列,期望和方差.5.*项选拔共有三轮考核,每轮设有一个问题,能正确答复以下问题者进入下一轮考试,否则即被淘汰,*选手能正确答复第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确答复互不影响.〔Ⅰ〕求该选手被淘汰的概率;〔Ⅱ〕该选手在选拔中答复以下问题的个数记为ξ,求随机变量ξ的分布列与数数期望.〔注:本小题结果可用分数表示〕6.一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数的概率分别布.(1)每次取出的产品不再放回去;〔2〕每次取出的产品仍放回去;〔3〕每次取出一件次品后,总是另取一件正品放回到这批产品中.7.设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程*2+b*+c=0实根的个数〔重根按一个计〕.〔I〕求方程*2+b*+c=0有实根的概率;〔II〕求ξ的分布列和数学期望;8.〔此题总分值12分〕*商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如下图的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.假设指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.〔I〕假设*位顾客消费128元,求返券金额不低于30元的概率;〔II〕假设*位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为〔元〕,求随机变量的分布列和数学期望.9.(此题总分值12分)中国**第三届国际矿冶文化旅游节将于2012年8月20日在**铁山举行,为了搞好接待工作,组委会准备在**理工学院和**师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图〔单位:cm〕**理工学院**师范学院**理工学院**师范学院996507211516171819891258934601〔1〕根据志愿者的身高编茎叶图指出**师范学院志愿者身高的中位数;〔2〕如果用分层抽样的方法从"高个子〞和"非高个子〞中抽取5人,再从这5人中选2人,则至少有一人是"高个子〞的概率是多少?〔3〕假设从所有"高个子〞中选3名志愿者,用表示所选志愿者中能担任"兼职导游〞的人数,试写出的分布列,并求的数学期望。10.*产品按行业生产标准分成8个等级,等级系数*依次为1,2,……,8,其中*≥5为标准A,*≥3为标准B,甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准〔I〕甲厂产品的等级系数*1的概率分布列如下所示:5678P0.4ab0.1且*1的数字期望E*1=6,求a,b的值;〔=2\*ROMANII〕为分析乙厂产品的等级系数*2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:353385563463475348538343447567用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数*2的数学期望.11.受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,*轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:将频率视为概率,解答以下问题:〔I〕从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;〔II〕假设该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为,生产一辆乙品牌轿车的利润为,分别求,的分布列;〔III〕该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,假设从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由。稳固练习答案LISTNUMOutlineDefault\l3【解析】此题主要考察分布列,数学期望等知识点.(Ⅰ)*的可能取值有:3,4,5,6.;;;.故,所求*的分布列为*3456P(Ⅱ)所求*的数学期望E(*)为:E(*)=.【答案】(Ⅰ)见解析;(Ⅱ).LISTNUMOutlineDefault\l3【考点定位】此题考察离散随机变量的分布列和期望与相互独立事件的概率,考察运用概率知识解决实际问题的能力,相互独立事件是指两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式.解:设分别表示甲、乙在第次投篮投中,则,,(1)记"甲获胜〞为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知,(2)的所有可能为:由独立性知:综上知,有分布列123从而,(次)3.解:〔1〕事件"〞表示,胜场或胜场〔即负场或负场〕,且两两互斥.;〔2〕事件"〞表示,在第5场中取胜且前场中胜3场,或在第5场中取胜且前场中胜3场〔即第5场负且场中负了3场〕,且这两者又是互斥的,所以〔3〕类似地,事件"〞、"〞的概率分别为,比赛场数的分布列为4567故比赛的期望为〔场〕这就是说,在比赛双方实力相当的情况下,平均地说,进展6场才能分出胜负.4.【答案及解析】(I)由频率公布直方图可知,在抽取的100人中,"体育迷〞有25人,从而2×2列联表如下:由2×2列联表中数据代入公式计算,得:因为3.030<3.841,所以,没有理由认为"体育迷〞与性别有关.(II)由频率公布直方图知抽到"体育迷〞的频率为0.25,将频率视为概率,即从观众中抽取一名"体育迷〞的概率为,由题意,,从而*的分布列为:【点评】此题主要考察统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望和方差,考察分析解决问题的能力、运算求解能力,难度适中.准确读取频率分布直方图中的数据是解题的关键.5.〔Ⅰ〕解法一:记"该选手能正确答复第轮的问题〞的事件为,则,,,该选手被淘汰的概率.〔Ⅰ〕解法二:记"该选手能正确答复第轮的问题〞的事件为,则,,.该选手被淘汰的概率.〔Ⅱ〕的可能值为,,,.的分布列为123.6.〔1〕*的所有可能值为1,2,3,4。*的分布列为P(*=1)=7/10,P(*=2)=3/10×7/9=7/30,P(*=3)=3/10×2/9×7/8=7/120,P(*=4)=3/10×2/9×1/8=1/120。〔2〕*的所有可能值为1,2,3,4。*的分布列为P(*=k)=,k=1,2,3,……〔3〕*的所有可能值为1,2,3,4。*的分布列为P(*=1)=7/10,P(*=2)=3/10×8/10=6/25,P(*=3)=3/10×2/10×9/10=27/500,P(*=4)=3/10×2/10×1/10=3/500。7.解:〔I〕由题意知,此题是一个等可能事件的概率,试验发生包含的根本领件总数为6×6=36,满足条件的事件是使方程有实根,则△=b2-4c≥0,即b≥下面针对于c的取值进展讨论当c=1时,b=2,3,4,5,6;当c=2时,b=3,4,5,6;当c=3时,b=4,5,6;当c=4时,b=4,5,6;当c=5时,b=5,6;当c=6时,b=5,6,目标事件个数为5+4+3+3+2+2=19,因此方程*2+b*+c=0有实根的概率为〔II〕由题意知用随机变量ξ表示方程*2+b*+c=0实根的个数得到ξ=0,1,2

根据第一问做出的结果得到则P(ξ=0)=,P(ξ=1)==,P(ξ=2)=,∴ξ的分布列为∴ξ的数学期望Eξ=0×+1×+2×=1,8.设指针落在A,B,C区域分别记为事件A,B,C.则. ………………3分〔Ⅰ〕假设返券金额不低于30元,则指针落在A或B区域.即消费128元的顾客,返券金额不低于30元的概率是.〔Ⅱ〕由题意得,该顾客可转动转盘2次.随机变量的可能值为0,30,60,90,120. 所以,随机变量的分布列为:0306090120…………11分…………11分其数学期望9、解:〔1〕根据志愿者的身高编茎叶图知**师范学院志愿者身高的中位数为:.…2分〔2〕由茎叶图可知,"高个子〞有8人,"非高个子〞有12人,按照分层抽样抽取的5人中"高个子〞为人,"非高个子〞为人;则至少有1人为高个子的概率=1-……6分〔3〕由题可知:**师范学院的高个子只有3人,则的可能取值为0,1,2,3;故,,,,即的分布列为:0123=0+1+2+3=。10.解:〔I〕因为又由*1的概率分布列得由〔II〕由得,样本的频率分布表如下:3456780.30.20.20.10.10.1用这个样本的频率分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论