2023届通辽市重点中学数学九年级上册期末考试模拟试题含解析_第1页
2023届通辽市重点中学数学九年级上册期末考试模拟试题含解析_第2页
2023届通辽市重点中学数学九年级上册期末考试模拟试题含解析_第3页
2023届通辽市重点中学数学九年级上册期末考试模拟试题含解析_第4页
2023届通辽市重点中学数学九年级上册期末考试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若气象部门预报明天下雨的概率是,下列说法正确的是()A.明天一定会下雨 B.明天一定不会下雨C.明天下雨的可能性较大 D.明天下雨的可能性较小2.若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)3.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在4.已知点,在双曲线上.如果,而且,则以下不等式一定成立的是()A. B. C. D.5.抛物线y=2x2﹣3的顶点坐标是()A.(0,﹣3) B.(﹣3,0) C.(﹣,0) D.(0,﹣)6.下列多边形一定相似的是()A.两个平行四边形 B.两个矩形C.两个菱形 D.两个正方形7.计算的值为()A.1 B.C. D.8.在一个不透明的口袋中装有个完全相同的小球,把它们分别标号为,从中随机摸出一个小球,其标号小于的概率为()A. B. C. D.9.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D.210.下列函数中,图象不经过点(2,1)的是()A.y=﹣x2+5 B.y= C.y=x D.y=﹣2x+311.如图所示的几何体的俯视图是()A. B. C. D.12.用公式法解一元二次方程时,化方程为一般式当中的依次为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.15.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.16.如图,正方形的边长为8,点在上,交于点.若,则长为__.17.若整数使关于的二次函数的图象在轴的下方,且使关于的分式方程有负整数解,则所有满足条件的整数的和为__________.18.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.三、解答题(共78分)19.(8分)如图,点A的坐标为(0,﹣2),点B的坐标为(﹣3,2),点C的坐标为(﹣3,﹣1).(1)请在直角坐标系中画出△ABC绕着点A顺时针旋转90°后的图形△AB′C′;(2)直接写出:点B′的坐标,点C′的坐标.20.(8分)若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.21.(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.22.(10分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.(1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.23.(10分)消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.24.(10分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.25.(12分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.26.如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;(1)写出点D的坐标;(2)若点E为x轴上一点,且S△AOE=,①求点E的坐标;②判断△AOE与△AOD是否相似并说明理由;(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据概率的意义找到正确选项即可.【详解】解:气象部门预报明天下雨的概率是,说明明天下雨的可能性比较大,所以只有C合题意.故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.2、B【分析】根据反比例函数y=(k≠0)的图象经过点(﹣4,)求出k的值,进而根据在反比例函数图像上的点的横纵坐标的积应该等于其比例系数对各选项进行代入判断即可.【详解】∵若反比例函数y=(k≠0)的图象经过点(﹣4,),∴k=﹣4×=﹣18,A:,故不在函数图像上;B:,故在函数图像上;C:,故不在函数图像上;D:,故不在函数图像上.故选:B.【点睛】本题主要考查了反比例函数图像上点的坐标特征,求出k的值是解题关键.3、A【解析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.4、B【解析】根据反比例函数的性质求解即可.【详解】解:反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而,而且同号,所以,即,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.5、A【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐标,本题得以解决.【详解】∵抛物线y=2x2﹣3的对称轴是y轴,∴该抛物线的顶点坐标为(0,﹣3),故选:A.【点睛】本题考查了抛物线的顶点坐标,找到抛物线的对称轴是解题的关键.6、D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.7、B【解析】逆用同底数幂的乘法和积的乘方将式子变形,再运用平方差公式计算即可.【详解】解:故选B.【点睛】本题考查二次根式的运算,高次幂因式相乘往往是先设法将底数化为积为1或0的形式,然后再灵活选用幂的运算法则进行化简求值.8、C【分析】直接利用概率公式求解即可求得答案.【详解】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,

其中小于的3个,∴从中随机摸出一个小球,其标号小于4的概率为:故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9、A【分析】先求出AB,由平行线分线段成比例定理得出比例式,即可得出结果.【详解】∵,

∴,

∵,

∴;

故选:A.【点睛】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.10、D【分析】根据题意分别计算出当时的各选项中的函数值,然后进一步加以判断即可.【详解】A:当x=2时,y=−4+5=1,则点(2,1)在抛物线y=−x2+5上,所以A选项错误;B:当x=2时,y==1,则点(2,1)在双曲线y=上,所以B选项错误;C:当x=2时,y=×2=1,则点(2,1)在直线y=x上,所以C选项错误;D:当x=2时,y=−4+3=−1,则点(2,1)不在直线y=−2x+3上,所以D选项正确.故选:D.【点睛】本题主要考查了函数图像上点的坐标的性质,熟练掌握相关概念是解题关键.11、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.12、B【分析】先整理成一般式,然后根据定义找出即可.【详解】方程化为一般形式为:,.故选:.【点睛】题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a是二次项系数,b是一次项系数,c是常数项.二、填空题(每题4分,共24分)13、【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON的弧长为:则r1=a同理:扇形DEF的弧长为:则r2=r1:r2=故答案为点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.14、2.【分析】由角平分线的性质得出∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,由勾股定理得出,由平行线的性质得出∠OPC=∠AOP,得出∠OPC=∠BOP,证出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP平分∠AOB,PD⊥OA于点D,PE⊥OB于点E,∴∠AOP=∠BOP,PC=PD=1,∠PDO=∠PEO=90°,∴,∵CP∥OA,∴∠OPC=∠AOP,∴∠OPC=∠BOP,∴,∴,∴,在Rt△OPD中,点M是OP的中点,∴;故答案为:2.【点睛】本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.15、310【分析】利用配方法将函数解析式转化为顶点式,利用二次函数的性质,可求得铅球行进的最大高度;铅球推出后落地时,高度y=0,把实际问题可理解为当y=0时,求得x的值就是铅球落地时的水平距离.【详解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.【点睛】此题考查了函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解.正确解答本题的关键是掌握二次函数的性质.16、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【点睛】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.17、【分析】根据二次函数的图象在轴的下方得出,,解分式方程得,注意,根据分式方程有负整数解求出a,最后结合a的取值范围进行求解.【详解】∵二次函数的图象在轴的下方,∴,,解得,,,解得,,∵分式方程有负整数解,∴,即,∵,∴,∴所有满足条件的整数的和为,故答案为:.【点睛】本题考查二次函数的图象,解分式方程,分式方程的整数解,二次函数的图象在x轴下方,则开口向下且函数的最大值小于1,解分式方程时注意分母不为1.18、-1或2或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,当函数为一次函数时,a-1=0,解得:a=1.故答案为-1或2或1.三、解答题(共78分)19、(1)见解析;(2)(4,1),(1,1).【分析】(1)利用网格特点和旋转的性质画出B、C点的对应点B′、C′即可;(2)利用(1)所画图形写出点B′的坐标,点C′的坐标.【详解】解:(1)如图,△ABC′为所作;(2)点B′的坐标为(4,1),点C′的坐标为(1,1).故答案为(4,1),(1,1).【点睛】本题考查了坐标和图形的变化-旋转,作出图形,利用数形结合求解更加简便20、【分析】用顶点式表达式,把点(1,-2)代入表达式求得a即可.【详解】解:用顶点式表达式:y=a(x﹣2)2+1,把点(1,﹣2)代入表达式,解得:a=﹣3,∴函数表达式为:y=﹣3(x﹣2)2+1=﹣3x2+12x﹣1.【点睛】考查的是求函数表达式,本题用顶点式表达式较为简便.21、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;

②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;

(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【详解】(1)①如图1,,反比例函数为,当时,,,当时,,,,设直线的解析式为,,,直线的解析式为;②四边形是菱形,理由如下:如图2,由①知,,轴,,点是线段的中点,,当时,由得,,由得,,,,,,四边形为平行四边形,,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时,,,,,,,,,,.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.22、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)连接OC交BD于G,设,根据垂径定理的推论可得出OC垂直平分BD,进而推出OG为中位线,再判定,利用对应边成比例即可求出的值;(3)连接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,设,则,再判定,利用对应边成比例求出m的值,进而得到AB和AD的长,再用勾股定理求出BD,可求出△BED的面积,由C为DE的中点可得△BEC为△BED面积的一半,即可得出答案.【详解】(1)证明:∵AD是的直径∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如图,连接OC交BD于G,,设,则,OC=AD=∴OC垂直平分BD又∵O为AD的中点∴OG为△ABD的中位线∴OC∥AB,OG=,CG=(3)如图,连接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴设,则又,∴,∵AD是的直径又【点睛】本题考查了圆周角定理,垂径定理的推论,全等三角形的判定和性质,相似三角形的判定和性质,以及勾股定理,是一道圆的综合问题,解题的关键是连接OC利用垂径定理得到中位线.23、(1);(2)小月获奖的机会更大些,理由见解析【分析】(1)根据概率公式直接求解即可;(2)首先根据题意分别画出树状图,然后由树状图即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【详解】解:(1)有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,则小杨获奖的概率;(2)设两张笑脸牌分别为笑,笑,两张哭脸牌分别为哭,哭,画树状图如下:小月:∵共有种等可能的结果,翻开的两张纸牌中出现笑脸的有种情况,∴小月获奖的概率是:;小杨:∵共有种等可能的结果,翻开的两张纸牌中出现笑脸的有种情况,∴小杨获奖的概率是:;∵,∴,∴小月获奖的机会更大些.【点睛】此题考查了列表法或树状图法求概率,注意小杨属于不放回实验,小月属于放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)证明见解析;(2)【分析】(1)连接OE,BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE,利用分割法即可求得阴影部分的面积.【详解】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4,∵CF==2,∴BC﹣AD=2,∴BC=3,在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.【点睛】本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.25、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论