故障诊断技术的国内外发展现状_第1页
故障诊断技术的国内外发展现状_第2页
故障诊断技术的国内外发展现状_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

故障诊断技术的国内外发展现状国际上,故障检测与诊断技术(FaultDetectionandDiagnosis,FDD)的发展直接促成了IFAC技术过程的故障诊断与安全性技术委员会的成立(1993)。从1991年起,IFAC每三年定期召开FDD方面的国际专题学术会议。在我国,自动化学会也于1997年批准成立中国自动化学会技术过程的故障诊断与安全性专业委员会,并于1999年5月在清华大学召开了首届全国技术过程的故障诊断与安全性学术会议ADDINEN.CITE<EndNote><Cite><Author>张颖伟</Author><Year>2007</Year><RecNum>132</RecNum><record><rec-number>132</rec-number><ref-typename="Book">6</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">张颖伟</style></author><author>S.JoeQin</author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">复杂工业过程的故障诊断</style></title></titles><dates><year>2007</year></dates><pub-location><styleface="normal"font="default"charset="134"size="100%">沈阳</style></pub-location><publisher><styleface="normal"font="default"charset="134"size="100%">东北大学出版社</style></publisher><urls></urls></record></Cite></EndNote>[4]。故障诊断是一门涉及信号处理、模式识别、人工智能、统计学、计算机科学等多个学科的综合性技术ADDINEN.CITE<EndNote><Cite><Author>王道平</Author><Year>2001</Year><RecNum>129</RecNum><record><rec-number>129</rec-number><ref-typename="Book">6</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">王道平</style></author><author><styleface="normal"font="default"charset="134"size="100%">张义忠</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">故障智能诊断系统的理论与方法</style></title></titles><dates><year>2001</year></dates><pub-location><styleface="normal"font="default"charset="134"size="100%">北京</style></pub-location><publisher><styleface="normal"font="default"charset="134"size="100%">冶金工业出版社</style></publisher><urls></urls></record></Cite></EndNote>[5]。20世纪60年代初期,美国、日本和欧洲的一些发达国家相继开展了设备诊断技术的研究,主要应用于航天、核电、电力系统等尖端工业部门,自20世纪80年代以后逐渐扩展到冶金、化工、船舶、铁路等许多领域。近年来故障诊断技术得到了迅速发展,概括地讲可以分为3类:基于信号处理的方法、基于解析模型的方法和基于知识的智能故障诊断方法。(1)基于信号处理的方法基于信号处理的方法,通常是利用信号模型(如相关函数、频谱、小波变换等)直接分析可测信号,提取诸如方差、幅值、频率等特征值,以此为依据进行故障诊断。基于信号处理的方法主要有傅立叶变换ADDINEN.CITE<EndNote><Cite><Author>Tao</Author><Year>2008</Year><RecNum>161</RecNum><record><rec-number>161</rec-number><ref-typename="ConferencePaper">47</ref-type><contributors><authors><author>WeiTao</author><author>WangXingsong</author></authors></contributors><titles><title>FaultDiagnosisofaSCARARobot</title><secondary-title>InternationalconferenceonMechatronicsandMachineVisioninPractice</secondary-title></titles><dates><year>2008</year></dates><urls><pdf-urls><url>internal-pdf://FaultDiagnosisofaSCARARobot-0827807488/FaultDiagnosisofaSCARARobot.pdf</url></pdf-urls></urls></record></Cite><Cite><Author>Choi</Author><Year>2009</Year><RecNum>152</RecNum><record><rec-number>152</rec-number><ref-typename="ConferencePaper">47</ref-type><contributors><authors><author>S.D.Choi</author><author>B.Akin</author><author>M.M.Rahimian,etc</author></authors></contributors><titles><title>FaultdiagnosisTechniqueofInductionMachineswithOrderedHarmonicandNoiseCancellation</title><secondary-title>IEEEInternationalElectricMachinesandDrivesConference</secondary-title></titles><pages>1333-1339</pages><dates><year>2009</year></dates><urls><pdf-urls><url>internal-pdf://Faultdiagnosistechniqueofinductionmachineswithorderedharmonicandnoisecancellation-1426334723/Faultdiagnosistechniqueofinductionmachineswithorderedharmonicandnoisecancellation.pdf</url></pdf-urls></urls></record></Cite></EndNote>[6,7]、小波变换ADDINEN.CITE<EndNote><Cite><Author>吴定海</Author><Year>2010</Year><RecNum>141</RecNum><record><rec-number>141</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">吴定海</style></author><author><styleface="normal"font="default"charset="134"size="100%">张培林</style></author><author><styleface="normal"font="default"charset="134"size="100%">任国全,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于双树小波包的发动机振动信号特征提取研究</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">振动与冲击</style></secondary-title></titles><periodical><full-title>振动与冲击</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">160-165</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">29</style></volume><number><styleface="normal"font="default"charset="134"size="100%">4</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2010</style></year></dates><urls><pdf-urls><url>internal-pdf://基于双树复小波包的发动机振动信号特征提取研究-2208957696/基于双树复小波包的发动机振动信号特征提取研究.pdf</url></pdf-urls></urls></record></Cite><Cite><Author>韩磊</Author><Year>2009</Year><RecNum>142</RecNum><record><rec-number>142</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">韩磊</style></author><author><styleface="normal"font="default"charset="134"size="100%">洪杰</style></author><author><styleface="normal"font="default"charset="134"size="100%">王冬</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于小波包分析的航空发动机轴承故障诊断</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">推进技术</style></secondary-title></titles><periodical><full-title>推进技术</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">328-332</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">30</style></volume><number><styleface="normal"font="default"charset="134"size="100%">3</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://基于小波包分析的航空发动机轴承故障诊断-1823294720/基于小波包分析的航空发动机轴承故障诊断.pdf</url></pdf-urls></urls></record></Cite></EndNote>[8,9]、主元分析ADDINEN.CITE<EndNote><Cite><Author>王玉甲</Author><Year>2009</Year><RecNum>140</RecNum><record><rec-number>140</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">王玉甲</style></author><author><styleface="normal"font="default"charset="134"size="100%">张铭钧</style></author><author><styleface="normal"font="default"charset="134"size="100%">郭勇</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于</style><styleface="normal"font="default"size="100%">PCA</style><styleface="normal"font="default"charset="134"size="100%">的水下机器人故障诊断与数据重构</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">华中科技大学学报(自然科学版)</style></secondary-title></titles><periodical><full-title>华中科技大学学报(自然科学版)</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">135-139</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">37</style></volume><number><styleface="normal"font="default"charset="134"size="100%">增刊1</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls></urls></record></Cite></EndNote>[10]、Hilbert-Huang变换ADDINEN.CITE<EndNote><Cite><Author>沈路</Author><Year>2009</Year><RecNum>138</RecNum><record><rec-number>138</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">沈路</style></author><author><styleface="normal"font="default"charset="134"size="100%">李俊生</style></author><author><styleface="normal"font="default"charset="134"size="100%">王鸿钧,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">改进</style><styleface="normal"font="default"size="100%">Hilbert</style><styleface="normal"font="default"charset="134"size="100%">-</style><styleface="normal"font="default"size="100%">Huang</style><styleface="normal"font="default"charset="134"size="100%">变换在齿轮故障诊断中的应用</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">航空动力学报</style></secondary-title></titles><periodical><full-title>航空动力学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">1899-1903</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">24</style></volume><number><styleface="normal"font="default"charset="134"size="100%">8</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://改进Hilbert_Huang变换在齿轮故障诊断中的应用-2375076096/改进Hilbert_Huang变换在齿轮故障诊断中的应用.pdf</url></pdf-urls></urls></record></Cite></EndNote>[11]等。文献ADDINEN.CITE<EndNote><Cite><Author>胡瑾秋</Author><Year>2009</Year><RecNum>143</RecNum><record><rec-number>143</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">胡瑾秋</style></author><author><styleface="normal"font="default"charset="134"size="100%">张来斌</style></author><author><styleface="normal"font="default"charset="134"size="100%">梁伟,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于谐波小波分析的管道小泄漏诊断方法</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">中国石油大学学报(自然科学版)</style></secondary-title></titles><periodical><full-title>中国石油大学学报(自然科学版)</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">118-124</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">33</style></volume><number><styleface="normal"font="default"charset="134"size="100%">4</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://基于谐波小波分析的管道小泄漏诊断方法-3896324864/基于谐波小波分析的管道小泄漏诊断方法.pdf</url></pdf-urls></urls></record></Cite></EndNote>[12]提出利用谐波小波对长输管的小泄漏诊断问题,取得了较好的应用效果;文献ADDINEN.CITE<EndNote><Cite><Author>陈保家</Author><Year>2010</Year><RecNum>139</RecNum><record><rec-number>139</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">陈保家</style></author><author><styleface="normal"font="default"charset="134"size="100%">何正嘉</style></author><author><styleface="normal"font="default"charset="134"size="100%">陈雪峰,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">机车故障诊断的局域均值分解解调方法</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">西安交通大学学报</style></secondary-title></titles><periodical><full-title>西安交通大学学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">40-44</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">44</style></volume><number><styleface="normal"font="default"charset="134"size="100%">5</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2010</style></year></dates><urls><pdf-urls><url>internal-pdf://机车故障诊断的局域均值分解解调方法-1553326592/机车故障诊断的局域均值分解解调方法.pdf</url></pdf-urls></urls></record></Cite></EndNote>[13]提出了一种针对机车故障振动信号的局域均值分解(LMD)解调诊断方法;文献ADDINEN.CITE<EndNote><Cite><Author>谭继勇</Author><Year>2009</Year><RecNum>144</RecNum><record><rec-number>144</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">谭继勇</style></author><author><styleface="normal"font="default"charset="134"size="100%">陈雪峰</style></author><author><styleface="normal"font="default"charset="134"size="100%">雷亚国,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">自适应频移变尺度随机共振在故障诊断中的应用</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">西安交通大学学报</style></secondary-title></titles><periodical><full-title>西安交通大学学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">69-73</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">43</style></volume><number><styleface="normal"font="default"charset="134"size="100%">7</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://自适应移频变尺度随机共振在故障诊断中的应用-0995513856/自适应移频变尺度随机共振在故障诊断中的应用.pdf</url></pdf-urls></urls></record></Cite></EndNote>[14]提出了一种基于时频指标的自适应移频变尺度随机共振算法用于轴承的故障诊断;文献ADDINEN.CITE<EndNote><Cite><Author>侯国莲</Author><Year>2009</Year><RecNum>150</RecNum><record><rec-number>150</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">侯国莲</style></author><author><styleface="normal"font="default"charset="134"size="100%">张怡</style></author><author><styleface="normal"font="default"charset="134"size="100%">张建华</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于形态学-小波的传感器故障诊断</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">中国电机工程学报</style></secondary-title></titles><periodical><full-title>中国电机工程学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">93-98</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">29</style></volume><number><styleface="normal"font="default"charset="134"size="100%">14</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://基于形态学_小波的传感器故障诊断-3275841026/基于形态学_小波的传感器故障诊断.pdf</url></pdf-urls></urls></record></Cite></EndNote>[15]利用形态学的消噪特性对信号进行消噪,之后利用小波对故障进行定位,在传感器故障诊断方面取得了较好的应用效果。(2)基于解析模型的方法基于解析模型的方法是以诊断对象的数学模型为基础,按照一定的数学方法对被测信息进行诊断处理,其优点是能深入系统本质的动态性质和实现实时诊断。主要有状态估计法ADDINEN.CITE<EndNote><Cite><Author>张柯</Author><Year>2009</Year><RecNum>145</RecNum><record><rec-number>145</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">张柯</style></author><author><styleface="normal"font="default"charset="134"size="100%">姜斌</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">一种改进的自适应故障诊断设计方法及其在飞控系统中的应用</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">航空学报</style></secondary-title></titles><periodical><full-title>航空学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">1271-1276</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">30</style></volume><number><styleface="normal"font="default"charset="134"size="100%">7</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://一种改进的自适应故障诊断设计方法及其在飞控系统中的应用-2608746496/一种改进的自适应故障诊断设计方法及其在飞控系统中的应用.pdf</url></pdf-urls></urls></record></Cite><Cite><Author>Zong</Author><Year>2007</Year><RecNum>158</RecNum><record><rec-number>158</rec-number><ref-typename="ConferencePaper">47</ref-type><contributors><authors><author>QunZong</author><author>WenjingLiu</author><author>LiankunSun</author></authors></contributors><titles><title>Faultdiagnosisofdistributednetworkedcontrolsystems</title><secondary-title>IEEEInternationalconferenceonAutomationandLogistics</secondary-title></titles><dates><year>2007</year></dates><urls><pdf-urls><url>internal-pdf://Faultdiagnosisofdistributednetworkedcontrolsystems-1749817344/Faultdiagnosisofdistributednetworkedcontrolsystems.pdf</url></pdf-urls></urls></record></Cite></EndNote>[16,17]和参数估计法ADDINEN.CITE<EndNote><Cite><Author>Isermann</Author><Year>1984</Year><RecNum>135</RecNum><record><rec-number>135</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>R.Isermann</author></authors></contributors><titles><title>Processfaultdetectionbasedonmodelingandestimationmethods:asurvey</title><secondary-title>Automatic</secondary-title></titles><periodical><full-title>Automatic</full-title></periodical><pages>387-404</pages><volume>20</volume><dates><year>1984</year></dates><urls></urls></record></Cite></EndNote>[18]等等。文献ADDINEN.CITE<EndNote><Cite><Author>Saif</Author><Year>2002</Year><RecNum>146</RecNum><record><rec-number>146</rec-number><ref-typename="ConferencePaper">47</ref-type><contributors><authors><author>MehrdadSaif</author></authors></contributors><titles><title>Faultdiagnosisbasedonequivalentcontrolconcept</title><secondary-title>Proceedingsofthe5thBiannualWorldAutomationCongress</secondary-title></titles><dates><year>2002</year></dates><urls><pdf-urls><url>internal-pdf://Faultdiagnosisbasedonequivalentcontrolconcept-1519971584/Faultdiagnosisbasedonequivalentcontrolconcept.pdf</url></pdf-urls></urls></record></Cite></EndNote>[19]利用滑模观测器对鲁棒故障进行诊断;文献ADDINEN.CITE<EndNote><Cite><Author>Niemann</Author><Year>2006</Year><RecNum>134</RecNum><record><rec-number>134</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>HenrikNiemann</author></authors></contributors><titles><title>ASetupforActiveFaultDiagnosis</title><secondary-title>IEEETransactionsonAutomaticControl</secondary-title></titles><periodical><full-title>IEEETransactionsonAutomaticControl</full-title></periodical><pages>1572-1580</pages><volume>51</volume><number>9</number><dates><year>2006</year></dates><urls><pdf-urls><url>internal-pdf://ASetupforActiveFaultDiagnosis-3310593792/ASetupforActiveFaultDiagnosis.pdf</url></pdf-urls></urls></record></Cite></EndNote>[20]利用YJBK参数化方法对动态系统的参变量故障进行诊断;文献ADDINEN.CITE<EndNote><Cite><Author>高庆</Author><Year>2005</Year><RecNum>122</RecNum><record><rec-number>122</rec-number><ref-typename="Thesis">32</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">高庆</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于信息融合的自行高炮火控系统故障诊断技术研究</style></title></titles><volume><styleface="normal"font="default"charset="134"size="100%">博士</style></volume><dates><year>2005</year></dates><pub-location><styleface="normal"font="default"charset="134"size="100%">石家庄</style></pub-location><publisher><styleface="normal"font="default"charset="134"size="100%">军械工程学院</style></publisher><urls></urls></record></Cite></EndNote>[21]提出利用滑模状态观测器进行自行高炮稳定跟踪系统的异常检测。文献ADDINEN.CITE<EndNote><Cite><Author>Zhao</Author><Year>2005</Year><RecNum>136</RecNum><record><rec-number>136</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>FengZhao</author><author>XenofonKoutsoukos</author><author>HorstHaussecker</author></authors></contributors><titles><title>MonitoringandFaultDiagnosisofHybridSystems</title><secondary-title>IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS-PARTB:CYBERNETICS</secondary-title></titles><periodical><full-title>IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS-PARTB:CYBERNETICS</full-title></periodical><pages>1225-1240</pages><volume>35</volume><number>6</number><dates><year>2005</year></dates><urls><pdf-urls><url>internal-pdf://Monitoringandfaultdiagnosisofhybridsystems-1592761600/Monitoringandfaultdiagnosisofhybridsystems.pdf</url></pdf-urls></urls></record></Cite></EndNote>[22]将基于解析模型的方法和信号处理的方法进行了结合用于连续和离散动态混合的系统故障诊断当中。由于通常很难获得被测对象(特别是复杂武器装备)的精确数学模型,从而大大限制了基于解析模型的故障诊断方法的应用。(3)基于知识的智能方法20世纪80年代后期,随着人工智能和计算机技术的飞速发展,产生了基于知识的智能故障诊断方法,并成为故障诊断研究的主流和发展方向。故障诊断系统的智能主要体现在它能有效地获取、传递、处理、再生和利用诊断信息,具有对给定环境下的诊断对象进行正确的状态识别、诊断和预测的能力。智能故障诊断方法主要包括:(1)基于专家系统的诊断方法ADDINEN.CITE<EndNote><Cite><Author>Cardozo</Author><Year>1988</Year><RecNum>27</RecNum><record><rec-number>27</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>ElerlCardozo</author><author>SaroshN.Talukdar</author></authors></contributors><titles><title>ADistributedExpertSystemforFaultDiagnosis</title><secondary-title>IEEETransactionsonPowerElectronics</secondary-title></titles><periodical><full-title>IEEETransactionsonPowerElectronics</full-title></periodical><pages>641-646</pages><volume>3</volume><number>2</number><dates><year>1988</year></dates><urls></urls></record></Cite></EndNote>[23]。专家系统(ExpertSystem,ES)是一个具有专门知识与经验的程序系统,通常由知识库(KnowledgeBase)、推理机(InferenceEngine)、人机接口(Man-MachineInterface)等部分组成,是当前研究最多、应用最广的一类智能诊断技术。专家系统的优点有:可以用类自然语言方式来表达无法用数学模型表达的专家知识;能在特定领域内模仿专家工作,处理非常复杂的情况;在已知其基本规则的情况下,无需大量细节数据即可运行;能对系统的结论做出解释。专家系统擅长逻辑推理和符号信息处理,适用于复杂系统的故障诊断。然而专家系统自身的一些缺点限制了它的广泛应用,如知识获取的瓶颈问题。文献ADDINEN.CITE<EndNote><Cite><Author>张喜</Author><Year>2009</Year><RecNum>153</RecNum><record><rec-number>153</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">张喜</style></author><author><styleface="normal"font="default"charset="134"size="100%">杜旭升</style></author><author><styleface="normal"font="default"charset="134"size="100%">刘朝英</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">车站信号控制设备故障诊断专家系统的研制与实现</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">铁道学报</style></secondary-title></titles><periodical><full-title>铁道学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">43-49</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">31</style></volume><number><styleface="normal"font="default"charset="134"size="100%">3</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://车站信号控制设备故障诊断专家系统的研究与实现-1414413571/车站信号控制设备故障诊断专家系统的研究与实现.pdf</url></pdf-urls></urls></record></Cite></EndNote>[24]对车站控制信号的故障诊断专家系统的研制与实现进行了较详细的探讨;文献ADDINEN.CITE<EndNote><Cite><Author>赵珍</Author><Year>2008</Year><RecNum>154</RecNum><record><rec-number>154</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">赵珍</style></author><author><styleface="normal"font="default"charset="134"size="100%">胡学发</style></author><author><styleface="normal"font="default"charset="134"size="100%">何大阔,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">水压试验机故障诊断专家系统的知识获取</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">东北大学学报(自然科学版)</style></secondary-title></titles><periodical><full-title>东北大学学报(自然科学版)</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">1677-1680</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">29</style></volume><number><styleface="normal"font="default"charset="134"size="100%">12</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2008</style></year></dates><urls><pdf-urls><url>internal-pdf://水压试验机故障诊断专家系统的知识获取-3159533571/水压试验机故障诊断专家系统的知识获取.pdf</url></pdf-urls></urls></record></Cite></EndNote>[25]针对水压试验机的故障诊断问题提出了基于减聚类和人机交互的方法进行知识获取,以解决专家系统知识获取的瓶颈问题。(2)基于神经网络的诊断方法。人工神经网络(ArtificialNeuralNetwork,ANN)具有大规模并行分布处理、联想记忆、自组织学习、鲁棒性和容错性等优良特性,对于非确定性的知识具有极强的处理能力,能够解决许多传统方法所无法解决的问题。然而,ANN的一些缺点限制了它的一些应用,如网络结构难以确定、局部极小点等问题。文献ADDINEN.CITE<EndNote><Cite><Author>Tian</Author><Year>2009</Year><RecNum>147</RecNum><record><rec-number>147</rec-number><ref-typename="ConferencePaper">47</ref-type><contributors><authors><author>WenjieTian</author><author>YuGeng</author></authors></contributors><titles><title>ANovelApproachtoElectronicCircuitFaultDiagnosisbasedonNeuralNetworkandCollinearity</title><secondary-title>InternationalConferenceonIndustrialandInformationSystems</secondary-title></titles><dates><year>2009</year></dates><urls><pdf-urls><url>internal-pdf://ANovelApproachtoElectronicCircuitFaultDiagnosisBasedonNeuralNetworkandCollinearity-1390139649/ANovelApproachtoElectronicCircuitFaultDiagnosisBasedonNeuralNetworkandCollinearity.pdf</url></pdf-urls></urls></record></Cite></EndNote>[26]联合多个神经网络用于故障诊断,能够较好的缓解ANN的缺点;文献ADDINEN.CITE<EndNote><Cite><Author>庄哲民</Author><Year>2009</Year><RecNum>148</RecNum><record><rec-number>148</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author><styleface="normal"font="default"charset="134"size="100%">庄哲民</style></author><author><styleface="normal"font="default"charset="134"size="100%">殷国华</style></author><author><styleface="normal"font="default"charset="134"size="100%">李芬兰,等</style></author></authors></contributors><titles><title><styleface="normal"font="default"charset="134"size="100%">基于小波神经网络的风力发电机故障诊断</style></title><secondary-title><styleface="normal"font="default"charset="134"size="100%">电工技术学报</style></secondary-title></titles><periodical><full-title>电工技术学报</full-title></periodical><pages><styleface="normal"font="default"charset="134"size="100%">224-228</style></pages><volume><styleface="normal"font="default"charset="134"size="100%">24</style></volume><number><styleface="normal"font="default"charset="134"size="100%">4</style></number><dates><year><styleface="normal"font="default"charset="134"size="100%">2009</style></year></dates><urls><pdf-urls><url>internal-pdf://基于小波神经网络的风力发电机故障诊断-3606572545/基于小波神经网络的风力发电机故障诊断.pdf</url></pdf-urls></urls></record></Cite></EndNote>[27]首先利用LDB算法进行特征提取,之后利用SOM网络将特征映射到高维空间,最后利用BP网络进行故障分类。(3)基于模糊理论的诊断方法ADDINEN.CITE<EndNote><Cite><Author>Islam</Author><Year>2000</Year><RecNum>74</RecNum><record><rec-number>74</rec-number><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>SyedMofizulIslam</author><author>TonyWu</author><author>GerardLedwich</author></authors></contributors><titles><title>ANovelFuzzyLogicApproachtoTransformerFaultDiagnosis</title><secondary-title>IEEETransactionsonDielectricsandElectricalInsulation</secondary-title></titles><periodical><full-title>IEEETransactionsonDielectricsandElectricalInsulation</full-title></periodical><pages>177-186</pages>

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论