版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,中,弦相交于点,连接,若,,则()A. B. C. D.2.斜坡坡角等于,一个人沿着斜坡由到向上走了米,下列结论①斜坡的坡度是;
②这个人水平位移大约米;③这个人竖直升高米;
④由看的俯角为.其中正确的个数是()A.1个 B.2个 C.3个 D.4个3.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-24.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.95.关于的方程的一个根是,则它的另一个根是()A. B. C. D.6.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是()A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心7.下列四个几何体中,主视图为圆的是()A. B. C. D.8.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11或1 D.12或19.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上10.在下列图形中,不是中心对称图形的是()A. B. C. D.11.下列图象能表示y是x的函数的是()A. B.C. D.12.如图,是的直径,,垂足为点,连接交于点,延长交于点,连接并延长交于点.则下列结论:①;②;③点是的中点.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题(每题4分,共24分)13.如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变长了_____m.14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),15.如图,在中,,,,点为边上一点,,将绕点旋转得到(点、、分别与点、、对应),使,边与边交于点,那么的长等于__________.16.一元二次方程x(x﹣3)=3﹣x的根是____.17.在中,,,,则的值是__________.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果CD=4,那么AD•BD的值是_____.三、解答题(共78分)19.(8分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.20.(8分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.21.(8分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.22.(10分)用适当的方法解一元二次方程:(1)x2+4x﹣12=0(2)2x2﹣4x+1=023.(10分)如图,在平面直角坐标系中,函数的图象与函数()的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为2:1.(1),;(2)求点的坐标;(1)若将绕点顺时针旋转,得到,其中的对应点是,的对应点是,当点落在轴正半轴上,判断点是否落在函数()的图象上,并说明理由.24.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.25.(12分)如图,是一个锐角三角形,分别以、向外作等边三角形、,连接、交于点,连接.(1)求证:(2)求证:26.已知一个二次函数图象上部分点的横坐标与纵坐标的对应值如下表所示:............(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)结合图像,直接写出当时,的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可.【详解】解:∵,,∴又∵,,,故选:.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.2、C【解析】由题意对每个结论一一分析即可得出其中正确的个数.【详解】解:如图,斜坡的坡度为tan30°==1:,正确.
②AB=20米,这个人水平位移是AC,
AC=AB•cos30°=20×≈17.3(米),正确.
③这个人竖直升高的距离是BC,
BC=AB•sin30°=20×=10(米),正确.
④由平行线的性质可得由B看A的俯角为30°.所以由B看A的俯角为60°不正确.
所以①②③正确.
故选:C.【点睛】此题考查的知识点是解直角三角形的应用-坡度坡角-仰角俯角问题,关键是熟练掌握相关概念.3、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.4、A【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=10°,OB=1,∴AO=1,则OP=6,故BP=6-1=1.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.5、C【分析】根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1x2=−3,∴x2=−1,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.6、B【解析】试题解析:由图可得:OA=OB=OC=,所以点O在△ABC的外心上,故选B.7、C【分析】首先依次判断每个几何体的主视图,然后即可得到答案.【详解】解:A、主视图是矩形,B、主视图是三角形,C、主视图为圆,D、主视图是正方形,故选:C.【点睛】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.8、A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【点睛】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.9、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.10、C【解析】根据中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A、是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项不符合题意;
C、不是中心对称图形,故本选项符合题意;
D、是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、D【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】A.如图,,对于该x的值,有两个y值与之对应,不是函数图象;B.如图,,对于该x的值,有两个y值与之对应,不是函数图象;C.如图,对于该x的值,有两个y值与之对应,不是函数图象;D.对每一个x的值,都有唯一确定的y值与之对应,是函数图象.故选:D.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.12、A【分析】根据“同弧所对圆周角相等”以及“等角的余角相等”即可解决问题①,运用相似三角形的判定定理证明△EBC∽△BDC即可得到②,运用反证法来判定③即可.【详解】证明:①∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确;②∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴,故②正确;③∵∠ADB=90°,∴∠BDF=90°,∵DE为直径,∴∠EBD=90°,∴∠EBD=∠BDF,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.故选:A.【点睛】本题考查了圆周角的性质,余角的性质,相似三角形的判定与性质,平行线的判定等知识,知识涉及比较多,但不难,熟练掌握基础的定理性质是解题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,即、,据此求得DE、HG的值,从而得出答案.【详解】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴、,即、,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长变长1m.故答案为:1.【点睛】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.14、∠ACP=∠B(或).【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当时,△ACP∽△ABC.故答案为:∠ACP=∠B(或).【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.15、【分析】如图,作PH⊥AB于H.利用相似三角形的性质求出PH,再证明四边形PHGC′是矩形即可解决问题.【详解】如图,作PH⊥AB于H.
在Rt△ABC中,∠C=90°,AC=5,sinB=,
∴=,
∴AB=13,BC==12,
∵PC=3,
∴PB=9,
∵∠BPH∽△BAC,
∴,
∴,
∴PH=,
∵AB∥B′C′,
∴∠HGC′=∠C′=∠PHG=90°,
∴四边形PHGC′是矩形,
∴CG′=PH=,
∴A′G=5-=,
故答案为.【点睛】此题考查旋转变换,平行线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x1=3,x2=﹣1.17、【分析】直接利用正弦的定义求解即可.【详解】解:如下图,在中,故答案为:.【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键.18、1【分析】先由角的互余关系,导出∠DCA=∠B,结合∠BDC=∠CDA=90°,证明△BCD∽△CAD,利用相似三角形的性质,列出比例式,变形即可得答案.【详解】解:∵∠ACB=90°,CD⊥AB于点D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD•BD=CD2=42=1,故答案为:1.【点睛】本题主要考查相似三角形的判定和性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.三、解答题(共78分)19、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1),D(-2,4).(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;
(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.
②难度较大,运用分类讨论思想,可以分三种情况:
(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时。【详解】解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.∴D(-2,4).(2)探究一:当0<t<4时,W有最大值.
∵抛物线交x轴于A、B两点,交y轴于点C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
当0<t<4时,作DM⊥y轴于M,
则DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=t(12-2t)=-2(t-3)2+1
∴当t=3时,W有最大值,W最大值=1.
探究二:
存在.分三种情况:
①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y轴,OA⊥y轴,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,此时又因为∠AOC=∠P1DA=90°,
∴Rt△ADP1∽Rt△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴当∠P1DA=90°时,存在点P1,使Rt△ADP1∽Rt△AOC,
此时P1点的坐标为(0,2)
②当∠P2AD=90°时,则∠P2AO=45°,∴△P2AD与△AOC不相似,此时点P2不存在.③当∠AP3D=90°时,以AD为直径作⊙O1,则⊙O1的半径圆心O1到y轴的距离d=4.
∵d>r,
∴⊙O1与y轴相离.
不存在点P3,使∠AP3D=90度.
∴综上所述,只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.21、(1)AD=9;(2)AD=【分析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)连接BE,证明△ACD∽△BCE,得到,求出BE的长,得到AD的长.【详解】解:(1)如图1,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如图2,连接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.22、(1),;(2),【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【详解】解:(1)∵x2+4x﹣12=0,∴(x+6)(x﹣2)=0,则x+6=0或x﹣2=0,解得,;(2)∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,则x=∴,【点睛】本题主要考查了一元二次方程的解法,解题的关键是熟悉一元二次方程的解法.23、(1)6,5;(2);(1),点不在函数的图象上.【分析】(1)将点分别代入反比例函数与一次函数的表达式中即可求出k,b的值;(2)先求出B的坐标,然后求出,进而求出,得出C的纵坐标,然后代入到一次函数的表达式中即可求出横坐标;(1)先根据题意画出图形,利用旋转的性质和,求出的纵坐标,根据勾股定理求出横坐标,然后判断横纵坐标之积是否为6,若是,说明在反比例函数图象上,反之则不在.【详解】(1)将点代入反比例函数中得,∴∴反比例函数的表达式为将点代入一次函数中得,∴∴一次函数的表达式为(2)当时,,解得∵与的面积比为2:1.设点C的坐标为当时,,解得∴(1)如图,过点作于点D∵绕点顺时针旋转,得到∴∴点不在函数的图象上.【点睛】本题主要考查反比例函数,一次函数与几何综合,掌握反比例函数的图象和性质,待定系数法是解题的关键.24、(1)图详见解析,;(2)图详见解析,;(3)图详见解析,【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可;(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是(4,−1),在坐标系中画出,并写出点,的坐标;【详解】解:(1)(2)(3)如图所示:(1)根据图形结合坐标系可得:;(2)根据图形结合坐标系可得:点(3,1);(3)根据图形结合坐标系可得:,;【点睛】本题主要考查了作图-旋转变换,作图-轴对称变换,掌握作图-旋转变换,作图-轴对称变换是解题的关键.25、(1)见解析;(2)见解析【分析】(1)过A作AM⊥CD于M,AN⊥BE于N,设AB与CD相交于点G.根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,根据全等三角形的判定定理即可得△ACD≌△AEB,根据全等三角形的性质可得AM=AN,根据角平分线的判定定理即可得到∠DFA=∠AFE,再根据全等三角形的对应角相等和三角形内角和等于180°得到∠DFB=∠DAG=60°,即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)过A作AM⊥CD于M,AN⊥BE于N,设AB与/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 变频器维修技术培训课件
- 建筑企业员工行为培训
- 中考数学二轮复习专项18~20题对点提分训练(三)课件
- 2025蛇年年终总结新年计划工作总结模板
- 15.3 串联和并联(8大题型)(含答案解析)
- 期中模拟检测(1-4单元)(试题)(含答案)-2024-2025学年四年级上册数学北师大版
- 吉林省白山市抚松县 2024-2025学年七年级上学期期中道德与法治试卷(含答案)
- T-ZFDSA 22-2024 芦根蜂蜜饮制作标准
- 【山东省安全员A证】考试题库及答案
- 编舞基础理论知识单选题100道及答案解析
- 国开2024年秋《机械制图》形考作业1-4答案
- 运动安全与健康智慧树知到期末考试答案章节答案2024年浙江大学
- 中国哲学经典著作导读智慧树知到期末考试答案章节答案2024年西安交通大学
- (完整版)四宫格数独题目204道(可直接打印)及空表(一年级数独题练习)
- 2024中国中煤招聘笔试参考题库含答案解析
- 23S519 小型排水构筑物(带书签)
- GA/T 544-2021多道心理测试系统通用技术规范
- 矩阵论知到章节答案智慧树2023年哈尔滨工程大学
- 手机号码归属地数据库
- 个人车位租赁合同电子版
- SQE工作手册范本
评论
0/150
提交评论