版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2(2011• A(0,+∞) B(﹣1,0)∪(2,+∞) C(2,+∞) D(﹣1,0)3(211• ,则满足f(x)≤2的x的取值范围是 A.[﹣1,2] 4(2010y1ln1cosxylntanxyfxygx
1cos 则函数yf2x与y1gx的图像也关于直线2
对称;③若奇函数f
对定义域内任意x都有fx
,则f
A. B. D.5.数列{ana1=1,a2=23
1
1
(n≥2),则an等于 (B)(2)n- (C)(2 n
n6(2008 文)函数ysin(2x图像的对称轴方程可能是3A.
B.x
C.x
D.x 7(2009 A.x2(y2)2
B.x2(y2)2
C.(x1)2(y3)2
D.x2(y3)218(2001• A(﹣∞,0) B(﹣∞,2] D(0,2)9(2010• 10(2014秋•高阳县校级期中)F1、F2是椭圆 +y2=1的左、右焦点,点P在椭圆上运动,则•的最大 11(1999•(x=Msi(ω+φ>0则函数g(x)=Mcos(ωx+φ)在[a,b]上( A.BCMD.可以取得最小值(12(2010• 0<x<yMNP ( △ABC的外接圆的圆心为O,两条边上的高的交点为H,OHm(OAOBOC),则m的取值是 已知定义在实数集R上的函数y=f(x)恒不为零,同时满足f(x+y)=f(x)·f(y),且当x>0时,f(x)>1,那么当 )A.f(x)<-1 若动点P、Q在椭圆9x2+16y2=144上,且满足OP⊥OQ,则中心O到弦PQ的距离OH必等于 B. C. 16(2010
4x1
的图象 A.关于原点对 B.关于直线y=x对 C.关于x轴对 D.关于y轴对过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段FP与FQ的长分别是p、则11 ). 2aB. C. 19(06卷)设f(n)22427210 23n10(nN),则f(n)等于 (A)2(8n7
(B)2(8n17
(C)2(8n37
(D)2(8n4720(10 Ⅱ)如果等差数列an中,a3a4a512,那么a1a2...a7 21(10年理)设abc>0,二次函数f(x)ax2bxc的图像可能是 在△ABCABCabcabc
cosAcosC 1cosAcos求值cos2acos2(a120)cos2(a240) 24(06卷I)已知函数f(x)a
2x
,若f
为奇函数,则a 26(2010 [0,+∞,集为(m,m+6,则实数c的值为 28(2013Sn=an1(a0, A.等比数列B.等差数列 29(2010• 30(2014
A.x=﹣1.B.x=1 31(2012• 32(2011• 33(2011• B. 34202•+﹣c(++c=b 35(2010• 36(2012• 37(2010• 38(2006 A( B( C( D( A( B( C(0, D( 40(009 A.B.C.41(2011• A.B.C.42(2012• A.B.C.43(2010• A.B.C.44(2012• 45(2010角为β,则2cosα+cos2β的值是( 46(07江苏6)设函数fxx1x1时,f(x3x1 有 )A、f()f()f( B、f()f()f(
C、f()f()f( D.f()f()f( 47.若P(2,-1)为圆(x1)2y225的弦AB的中点,则直线AB的方程是 Axy3
B、2xy3
Cxy1
D、2xy5xy248(076,6,xy6,6,
y, xA9
B、9
C、
D、3, 5 49.y
4x2(x22)与直yk(x2)4有两个公共点时,k的取值范围是 A、(0,5
1B、(,)4
C、(5)
(D ,(1250.函数y|x|(1x)在区间A上是增函数,则区间A是 A、
B、0,1 C、 D、1 2 251(06湖南理10)若圆x2y24x4y100上至少有三个不同的点到直线l:axby0的距离为2 则直线l的倾斜角的取值范围是( 2A
,
B
,5
C
D、0
252.方程cosxlgx0的实根的个数是 D、53(07理7)在R上定义的函数f(x)是偶函数且f(x)f(2x)若f(x)在区间[12]上是减函数则f( 54.(10年)设集合A={(x,y)
1},B={(x,y)|y3},则A∩B的子集的个数是 网ZXXK]A. 4x55.(10年)若直线yxb与曲线y3 有公共点,则b4x 1,122 122,122 122, 2, 4xx (a1)x的解集为A,且A{x|0x2},那么实数4xx1直线y=kx+3k-2与直线
4]58(2010辽宁理数)已知1xy4且2xy3,则z2x3y的取值范围是 59(2010年江西理)13.已知向量a,b满足a1,b2,a与b的夹角为60°,则ab 60(10)已知平面向量(0,
1,且与120
围 61(2014 若关于x的方程 A.k≤0k>1B.k>1k=0或 或k=0或k<﹣1 或k=0或62(2014 A(﹣∞,0) 63(2013 A.m>4或m<﹣4 C.m>3或m<﹣3 A、16 D、64 EF 2A2
B、 D、 2 67(07 Ⅱ理12)设F为抛物线y24x的焦点,A、B、C为该抛物线上的三点,若FAFBFC0,则FAFBFC等于( C、4D、368(2013 69(2015春•大庆校级月考)已知(1﹣2x)7=a0+a1x+a2x2+…+a7x7.则 A.﹣1 70(2014
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 质量监控供货无忧
- 购销合同的简单写法
- 购销合同管理的方法探讨
- 超值木板购销合同
- 车辆服务合同的续签
- 践行禁毒责任的承诺
- 连带责任担保借款合同格式
- 退役军人的服务承诺书
- 采购合同中的合规培训
- 采购质量保证书解析
- 小学数学专题讲座:小学数学计算能力的培养知识讲稿课件
- 监理实施细则范本(清淤)
- 西格斯雾化器操作维护课件
- 小学心理健康教育《情绪晴雨表》教学课件
- 硫酸密度、浓度对照表
- 相似三角形的应用举例课件
- DB44-T 2192-2019大型科学仪器设施共享服务平台数据交换规范-(高清现行)
- 高中政治统编版必修2经济与社会教材解读课件
- 一级病原微生物实验室危害评估报告
- 《红星照耀中国》导读激趣课教学设计王浩
- 浙江省一级幼儿园标准
评论
0/150
提交评论