版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.2.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=23.若△ABC∽△ADE,若AB=9,AC=6,AD=3,则EC的长是()A.2 B.3 C.4 D.54.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°5.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、66.以为顶点的二次函数是()A. B.C. D.7.若反比例函数的图象分布在二、四象限,则关于x的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.只有一个实数根8.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.59.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.10.若关于的一元二次方程的一个根是,则的值是()A.2011 B.2015 C.2019 D.2020二、填空题(每小题3分,共24分)11.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.12.如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD上的一动点,连接PC,过点P作PE⊥PC交AB于点E.以CE为直径作⊙O,当点P从点A移动到点D时,对应点O也随之运动,则点O运动的路程长度为_____.13.若将方程x2+6x=7化为(x+m)2=16,则m=______.14.如图,已知正六边形内接于,若正六边形的边长为2,则图中涂色部分的面积为______.15.如图,点是圆周上异于的一点,若,则_____.16.已知:如图,在平面上将绕点旋转到的位置时,,则为__________度.17.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°18.一元二次方程的两实数根分别为,计算的值为__________.三、解答题(共66分)19.(10分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)20.(6分)如图,在中,,点是边上一点,连接,以为边作等边.如图1,若求等边的边长;如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.①求证:;②如图3,将沿翻折得,连接,直接写出的最小值.21.(6分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积.22.(8分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.23.(8分)解方程:x+3=x(x+3)24.(8分)同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.25.(10分)(1)x2+2x﹣3=0(2)(x﹣1)2=3(x﹣1)26.(10分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数
参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.3、C【分析】利用相似三角形的性质得,对应边的比相等,求出AE的长,EC=AC-AE,即可计算DE的长;【详解】∵△ABC∽△ADE,∴,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.4、A【解析】试题分析:∵弧长,∴圆心角.故选A.5、D【详解】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案选D.6、C【解析】若二次函数的表达式为,则其顶点坐标为(a,b).【详解】解:当顶点为时,二次函数表达式可写成:,故选择C.【点睛】理解二次函数解析式中顶点式的含义.7、A【分析】反比例函数的图象分布在二、四象限,则k小于0,再根据根的判别式判断根的情况.【详解】∵反比例函数的图象分布在二、四象限∴k<0则则方程有两个不相等的实数根故答案为:A.【点睛】本题考查了一元二次方程方程根的情况,务必清楚时,方程有两个不相等的实数根;时,方程有两个相等的实数根;时,方程没有实数根.8、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.9、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.10、C【分析】根据方程解的定义,求出a-b,利用作图代入的思想即可解决问题.【详解】∵关于x的一元二次方程的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.二、填空题(每小题3分,共24分)11、1【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出答案.【详解】解:∵正多边形的每一个外角都等于1°,∴正多边形的边数为:,∴这个正多边形的中心角为:.故答案为:1.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质并根据题意求出正多边形的边数是解决问题的关键.12、.【分析】连接AC,取AC的中点K,连接OK.设AP=x,AE=y,求出AE的最大值,求出OK的最大值,由题意点O的运动路径的长为2OK,由此即可解决问题.【详解】解:连接AC,取AC的中点K,连接OK.设AP=x,AE=y,∵PE⊥CP∴∠APE+∠CPD=90°,且∠AEP+∠APE=90°∴∠AEP=∠CPD,且∠EAP=∠CDP=90°∵△APE∽△DCP∴,即x(3﹣x)=2y,∴y=x(3﹣x)=﹣x2+x=﹣GXdjs4436236(x﹣)2+,∴当x=时,y的最大值为,∴AE的最大值=,∵AK=KC,EO=OC,∴OK=AE=,∴OK的最大值为,由题意点O的运动路径的长为2OK=,故答案为:.【点睛】考查了轨迹、矩形的性质、三角形的中位线定理和二次函数的应用等知识,解题的关键是学会构建二次函数解决最值问题.13、3【详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,∴(x+3)2=16∴m=3.14、【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:.故答案为:.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.15、或【分析】根据题意,分为点B在优弧和劣弧两种可能进行分析,由圆周角定理,即可得到答案.【详解】解:当点B在优弧AC上时,有:∵∠AOC=140°,∴;当点B在劣弧AC上时,有∵,∴,∴;故答案为:或.【点睛】本题考查了圆周角定理,以及圆内接四边形的性质,解题的关键是熟练掌握同弧所对的圆周角等于圆心角的一半.16、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【详解】解:∵AA′∥BC,
∴∠A′AB=∠ABC=65°.
∵BA′=AB,
∴∠BA′A=∠BAA′=65°,
∴∠ABA′=1°,
又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',
∴∠CBC′=∠ABA′=1°.
故答案为:1.【点睛】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.17、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.18、-10【分析】首先根据一元二次方程根与系数的关系求出和,然后代入代数式即可得解.【详解】由已知,得∴∴故答案为-10.【点睛】此题主要考查根据一元二次方程根与系数的关系求代数式的值,熟练掌握,即可解题.三、解答题(共66分)19、(1);(2)【分析】(1)方程左边的多项式利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程右边看做一个整体,移项到左边,提取公因式化为积的形式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:(1)2x2﹣7x+3=0,分解因式得:(2x﹣1)(x﹣3)=0,可得2x﹣1=0或x﹣3=0,解得:x1=,x2=3;(2)7x(5x+2)=6(5x+2),移项得:7x(5x+2)﹣6(5x+2)=0,分解因式得:(7x﹣6)(5x+2)=0,可得7x﹣6=0或5x+2=0,解得:x1=,x2=﹣.【点睛】考核知识点:解一元二次方程.掌握基本方法是关键.20、(1);(2)证明见解析;(3)最小值为【分析】(1)过C做CF⊥AB,垂足为F,由题意可得∠B=30°,用正切函数可求CF的长,再用正弦函数即可求解;(2)如图(2)1:延长BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再证DG=AD,得CF=DG,可得四边形DGFC是矩形即可;(3)如图(2)2:设ED与AC相交于G,连接FG,先证△EDF≌△FD'B得BD'=DE,当DE最大时最小,然后求解即可;【详解】解:(1)如图:过C做CF⊥AB,垂足为F,∵,∴∠A=∠B=30°,BF=3∵tan∠B=∴CF=又∵sin∠CDB=sin45°=∴DC=∴等边的边长为;①如图(2)1:延长BC到G使CG=BC∵∠ACB=120°∴∠GCE=180°-120°=60°,∠A=∠B=30°又∵∠ACB=60°∴∠GCE=∠ACD又∵CE=CD∴△CGE≌△CAD(SAS)∴∠G=∠A=30°,GE=AD又∵EF=FB∴GE∥FC,GE=FC,∴∠BCF=∠G=30°∴∠ACF=∠ACB-∠BCF=90°∴CF∥DG∵∠A=30°∴GD=AD,∴CF=DG∴四边形DGFC是平行四边形,又∵∠ACF=90°∴四边形DGFC是矩形,∴②)如图(2)2:设ED与AC相交于G,连接FG由题意得:EF=BF,∠EFD=∠D'FB∴△EDF≌△FD'B∴BD'=DE∴BD'=CD∴当BD'取最小值时,有最小值当CD⊥AB时,BD'min=AC,设CDmin=a,则AC=BC=2a,AB=2a的最小值为;【点睛】本题属于几何综合题,考查了矩形的判定、全等三角形的判定、直角三角形的性质等知识点;但本题知识点比较隐蔽,正确做出辅助线,发现所考查的知识点是解答本题的关键.21、(1)详见解析;(2)或【分析】(1)先证,再证,得到,即可得出结论;(2)分当时和当时两种情况分别求解即可.【详解】(1)∵,∴,∵,,∴,∵是直径,∴,∴,∴,∴,∴,∴是的切线.(2)①当时,,是等边三角形,可得,∵,∴,,∴.②当时,易知,的边上的高,∴.【点睛】此题是圆的综合题,主要考查了切线的性质和判定,等边三角形的判定和性质,求三角形的面积熟练掌握切线的判定与圆周角定理是解题的关键.22、30°【分析】利用垂径定理和圆周角定理证得∠A=∠1=∠ABD,然后根据直角三角形两锐角互余即可求得∠1的度数.【详解】解:∵半径OD与弦AC垂直,∴,∴∠1=∠ABD,∵半径OD与弦AC垂直,∴∠ACB=90°,∴OD∥BC,∴∠1=∠D,∵∠A=∠D,∴∠A=∠1=∠ABD,∵∠A+∠ABC=90°,∴3∠1=90°,∴∠1=30°.【点睛】本题考查了垂径定理和和圆周角定理的推论,解决本题的关键是正确理解题意,熟练掌握垂径定理,能够理清各线段和角的关系.23、x1=1,x2=﹣1【分析】先利用乘法分配律将括号外面的分配到括号里面,再通过移项化成一元二次方程的标准形式,利用提取公因式即可得出结果.【详解】解:方程移项得:(x+1)﹣x(x+1)=0,分解因式得:(x+1)(1﹣x)=0,解得:x1=1,x2=﹣1.【点睛】本题主要考查的是一元二次方程的解法,一元二次方程的解法主要包括:提取公因式,公式法,十字相乘等.24、(1)详见解析;(2)1.【分析】(1)先证明四边形AECF是平行四边形,再证明AF=CE即可.(2)在RT△ABE中利用勾股定理求出BE、AE,再根据S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC求出面积即可.【详解】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贷款合同格式范本
- 集装箱货物运输服务合同
- 合作伙伴合同协议
- 宿舍内务优化保证
- 灰砂砖购销权益合作合同
- 恋爱长久决心合同
- 企业贷款利息协议
- 工程专业总包服务合同的风险评估
- 铁投分包商劳务合同
- 建筑砖块购销合同格式
- 2022年反洗钱阶段考试试题库
- GB/T 6792-2009客车骨架应力和形变测量方法
- GB 2721-2015食品安全国家标准食用盐
- 2023年通行高速公路施工布控及安全方案
- 电气第一种第二种工作票专题培训课件
- 国际物流相关知识
- 建筑工地消防安全知识培训课件
- 应急预案与应急能力建设
- 企业安全生产标准化评价表
- 城市排水工程-课件
- 初中数学人教八年级上册(新疆地区)第十三章轴对称最短路径问题PPT
评论
0/150
提交评论