![车辆工程课件II-Vibration of Vehicle System_第1页](http://file4.renrendoc.com/view/b887c59162f1962b7cd36c4c25a2e879/b887c59162f1962b7cd36c4c25a2e8791.gif)
![车辆工程课件II-Vibration of Vehicle System_第2页](http://file4.renrendoc.com/view/b887c59162f1962b7cd36c4c25a2e879/b887c59162f1962b7cd36c4c25a2e8792.gif)
![车辆工程课件II-Vibration of Vehicle System_第3页](http://file4.renrendoc.com/view/b887c59162f1962b7cd36c4c25a2e879/b887c59162f1962b7cd36c4c25a2e8793.gif)
![车辆工程课件II-Vibration of Vehicle System_第4页](http://file4.renrendoc.com/view/b887c59162f1962b7cd36c4c25a2e879/b887c59162f1962b7cd36c4c25a2e8794.gif)
![车辆工程课件II-Vibration of Vehicle System_第5页](http://file4.renrendoc.com/view/b887c59162f1962b7cd36c4c25a2e879/b887c59162f1962b7cd36c4c25a2e8795.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§3VibrationofVehicleSystemFreedoms,coordinateandvibrationmodesVibrationofvehiclewithonlysecondarysuspensionMethodofderivingdifferentialequationofvehiclesystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsByzhou
jinsong2004
TongjiUniversity§3VibrationofVehicleSystemFreedoms,coordinateandvibrationmodesDegrees-offreedom:-1bodywith5dofs=52bogieswith5dofs=104wheelsetswith2dofs=8Total=26,i.e.52states§3VibrationofVehicleSystemFreedoms,coordinateandvibrationmodesBodyframe(6DOF)Bogieframes(2*6DOF)Wheelsets(4*6DOF,bounceandrollmodesareconstrainedbyrail)BodyForwardBounceLateralRollYawPitchSuspensionsWheel-railcreepforcesBodyFlexibilitiesOthercomponentsorsub-systems§3VibrationofVehicleSystemFreedoms,coordinateandvibrationmodesBodyxzypitchlateral§3VibrationofVehicleSystemFreedoms,coordinateandvibrationmodesxzybounceyawBody§3VibrationofVehicleSystemFreedoms,coordinateandvibrationmodesxzyforwardBodyroll§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationTopologyrelationsintheresearchedsystem(includingconnectinginformation,dimension)CoordinatesdefinitionPhysicalpropertiesWhenbuildingsystemmotionequations,especiallypayattentiontothefollowingmainpoints:§3VibrationofVehicleSystemPlot,makecleartheconnectionrelationsbetweeneachpartDefinecoordinatesMarkthephysicalproperties,anddimensionsaccordingly,stepsofderivingmotionequationsare:
TheMostImportantstepistheFirststep,whichsimplifytherealsystemandisthebaseoftheoryanalysis.VibrationofvehiclewithonlysecondarysuspensionFreeVibration§3VibrationofVehicleSystemUseNewton’ssecondlaw,yields:VibrationofvehiclewithonlysecondarysuspensionFreeVibration§3VibrationofVehicleSystemWithviscousdamperinthesuspension,onehas:VibrationofvehiclewithonlysecondarysuspensionFreeVibrationparameters:Mc=36000kgJcy=2300000kg.m^2Ksz=0.36e6N/mCsz=?§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibration§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationNoviscousdamper,stepinputresponse:0.08mStepinput
f=0.8554T=1.1690Csz=0displacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationNoviscousdamper,stepinputresponse:
f=0.9632T=1.0382displacementdisplacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationNoviscousdamper,stepinputresponse:CenterplateResponseofthispointdisplacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper,stepinputresponse:parameters:Mc=36000kgJcy=2300000kg.m^2Ksz=0.36e6N/mCsz=?0.08mStepinput§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper,stepinputresponse:Czs=2500Zeta_Zc=0.0258Czs=2500Zeta_Phic=0.0291displacementdisplacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper,stepinputresponse:Czs=2500N.m/sdisplacementdisplacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationviscousdamper,stepinputresponse:Czs=10000N.m/sZeta_zc=0.1034Czs=10000N.m/sZeta_zc=0.1164displacementdisplacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationWithviscousdamper,stepinputresponse:displacementdisplacement§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionFreeVibrationWithviscousdamper,Thesystemstepinputresponseisasfollowing:Czs=20000N.m/sCzs=0N.m/saccelerationacceleration§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionForcedVibrationWhere:a-amplitudew-trackirritatingfrequencyLr-trackwavelengthV-speed§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionForcedVibrationTrackcircularfrequencyTimedelayDisplacementatthecenteroffirsttruckcanbewrittenas:Displacementatthecenterofsecondtruck:§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionForcedVibrationUseNewton’ssecondlaw,thedifferentialequationsofmotion:Simplifyupperequations,onehas:So,yields:§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionForcedVibrationParameters:Csz=0N.m/sZt=sin(t)displacementacceleration§3VibrationofVehicleSystemVibrationofvehiclewithonlysecondarysuspensionForcedVibrationParameters:Csz=10000N.m/sZt=sin(t)displacementacceleration§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemMainmethodstoderivethemotionequationareNewton’ssecondlawLagrange’sequationHamiltons’sprincipleInfluencecoefficientmethodBodyPlot,makecleartheconnectionrelationsbetweeneverypartDefinecoordinatesMarkthephysicalproperties,anddimensionsBeforeusethesemethods,onestillhastodofollowingworkstodefinethesystem:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemBodyV§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodBodyDifferentialmotionequationsusuallyarewritteninmatrixformasfollowing:where:M–inertiamatrixofsystemC-dampingmatrixK-stiffnessmatrixF-forcematrixAllmatricesaredefinedinthesamecoordinate,globalcoordinate.influencecoefficientmethoddirectlyderivestheMmatrix,C,Kmatrix,canbeobtainedattheaidofcomputer.Farewrittenmanuallylatter.§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodFirst,derivetheKmatrix
definecompressingispositive,pullingisnegative.0000000000000000000000Generalizedcooridnatesstiffnesselements§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod
Itscoefficientmatrixis:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod
stiffnessmatrixis:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodthen,Cmatrixalsodefinecompressingispositive,pullingisnegative.000000Generalizedcooridnatesdampingelements§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethod
inertiamatrix000000000000000000000000000000inertiaelementsGeneralizedcooridnates§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodBodyso,inertiamatrixis:so,thefreevibrationmotioneq.is:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodBodywhenthereexiststrackirregularity:?§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodwhenthereexiststrackirregularity:0000000000000000000000zw100-kpz000zw2000-kpz00zw30000-kpz0zw400000-kpzTrackinput§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodBody
so,wecanseethismethodhasverygoodflexibility,whenmoreandelementsaretobetakenintoconsideration,justaugmenttheAmatrix,thecomplexityincreasesonlylinearly!so,thevibrationmotioneq.Withtrackirregularityinputisthesameformas:note,wherethevariablevectoris:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodBodyso,motionequationsshouldbewrittenas:
but,thelastfourwheelsetmotionequationsshouldbedeleted,becausetheyareconstrained,andequaltotrackinputaccordingtoassumption.where:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemInfluencecoefficientmethodBody
astotheFmatrix,discomposetheforcesactedonvehiclepartsintogeneralizedforces,definetheirsignsaccordingtothegeneralizedcoordinates,thenFmatrixformed.asaexample,seethefigureatrightside,FeccentricfromcenterlineofcarbodysothematrixFis:flso,theforcedvibrationdifferentialeq.is:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemLagrange’sequationBodyV§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemLagrange’sequationAsasimpleexample,derivethemotioneq.Offollowingsystem:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemLagrange’sequationKineticenergy:Potentialenergy:Dissipationfunction:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemLagrange’sequationKineticenergy:potentialenergy:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemLagrange’sequationDissipationfunction:so:Usethesamemethod,wehave:§3VibrationofVehicleSystemMethodsofderivingdifferentialequationsofvehiclesystemHamilton’sprincipleAnotheralternateapproachforderivingthedifferentialequationsofmotionfromscalarenergyquantitiesisHamilton’sprinciple.OneofthemostapplicablevariationaltechniqueisHamilton’sprinciple,whichstatesthat:WhereTisthesystemkineticenergy,Visthesystempotentialenergy,andisthevirtualworkofnonconservativeforces.§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingBodyV§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingAsanalternativemethod,thetraditionalNewton’ssecondlaw’sareusedtoderivethemotionequationsasthetextbookdemonstrates,themotionequationsare:Simplifyas:§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingWhere:§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingConsiderthecarbodyandtruckmotionequations,theyarecoupled,soareanalyzedtogether:BodyZtMcMt4Ksz8Kpzwhere:Zc§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingTheirsolutionsareassumedas:BodyZtMcMt4Ksz8KpzA,B,amplitudeofcarbodyandtruck,psystemnaturalfrequency,alphi,phaseangle.Substitutethesolutionintomotionequations,yields:ZcCharacteristicfunctionsSamewiththeSDOFsystem,onehas:§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingTwo,therearetwonaturalfrequencies.Solvethecharacteristicfunctions,theloweroneis:BodyZtMcMt4Ksz8KpzZcTheotheroneis:§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingSolutionare:BodyZtMcMt4Ksz8KpzZcModeshape:Lowfrequency:Highfrequency:Atlowfrequency§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingBodyZtMcMt4Ksz8KpzZc§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingBodyZtMcMt4Ksz8KpzZcAsanexample,aVehicleparameters:Mc=36000kgMt=2100kgKsz=260000N/mKpz=300000N/mWhenzt1(0)=0.02,zt2(0)=0.02,zc=0.02*3.0670,thesimulationresultinmatlab/simulinkisasfollowing:fst1=0.1641m,fst2=0.3392fst/fst1=3.0670§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingCarbodyverticaldisplacementTruckframeverticaldisplacement§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingTruckframeverticalacceleration§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingBodyV0.08mStepinputTheresponseisasfollowing:§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingCarbodyverticaldisplacementCarbodypitchangleresponse§3VibrationofVehicleSystemVibrationofvehiclewithwithprimaryandsecondarysuspensionsAnalysisoffreevibration,withoutviscousdampingTruckframeverticaldisplacementTruckframepitchangleresponseIncludingthreefrequenciesinthewaveWhy?§3VibrationofVehicleSystemMulti-DegreeofFreedomSystemInthecaseofundampedfreevibrationofmulti-degreeoffreedomsystems:Assumeasolutionintheform:Substitutetheupperformintothefirstequation,leadto:Whichleadsto:Ascomparing,standardeigenvalueproblemistheformasfollowing:§3VibrationofVehicleSystemMulti-DegreeofFreedomSystem
Thisequationhasanontrivialsolutionifandonlyifthecoefficientmatrixissingular,thatis:Characteristicfunctions
ModeShapes:Associa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度纱线产业链上下游协同发展合同2篇
- 个性化简易离婚合同模板(2024年版)一
- 二零二四年度幼儿园教师劳动保障聘用合同2篇
- 2025年度个人租房合同模板(含租赁期限调整)
- 2025年度废旧轮胎回收与资源化利用合同样本
- 2025年度环境监测项目质量监督与验收合同
- 2025年度航空航天发动机耗材采购合同(升级版)
- 二零二五年度差速器铸件知识产权保护合同4篇
- 二零二五年度储藏室租赁合同违约责任协议3篇
- 二零二五年度地下综合交通枢纽建设项目合同3篇
- 2025年陕西西安市经济技术开发区管委会招聘30人历年高频重点提升(共500题)附带答案详解
- 【可行性报告】2024年数据标注与审核项目可行性研究分析报告
- 2024-2025学年沪科版数学七年级上册期末综合测试卷(一)(含答案)
- 《针法灸法》课件-温灸器灸
- 陕西省咸阳市2023-2024学年高一上学期期末考试 数学 含答案
- 天津市河北区2024-2025学年八年级上学期11月期中历史试题(含答案)
- 小儿高热惊厥课件
- 河南省郑州市二七区2023-2024学年七年级下学期期末考试语文试题
- JB-T 8532-2023 脉冲喷吹类袋式除尘器
- 山东省济宁市2023年中考数学试题(附真题答案)
- 供应链金融与供应链融资模式
评论
0/150
提交评论