2022-2023学年浙江省宁波市海曙区三校联考数学九年级上册期末监测模拟试题含解析_第1页
2022-2023学年浙江省宁波市海曙区三校联考数学九年级上册期末监测模拟试题含解析_第2页
2022-2023学年浙江省宁波市海曙区三校联考数学九年级上册期末监测模拟试题含解析_第3页
2022-2023学年浙江省宁波市海曙区三校联考数学九年级上册期末监测模拟试题含解析_第4页
2022-2023学年浙江省宁波市海曙区三校联考数学九年级上册期末监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.2.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60° B.75° C.85° D.90°4.一次函数与二次函数在同一平面直角坐标系中的图象可能是().A. B. C. D.5.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.6.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是()A.13 B.12 C.10 D.97.点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y1=y3<y2 C.y3<y2<y1 D.y1<y3<y28.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个 B.4个 C.1个 D.2个9.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥410.对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<1二、填空题(每小题3分,共24分)11.如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则__.的整数).12.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.13.如图,已知反比例函数的图象经过斜边的中点,与直角边相交于点.若的面积为8,则的值为________.14.已知x=2是关于x的方程x2-3x+k=0的一个根,则常数k的值是___________.15.如图,要拧开一个边长为的正六边形螺帽,扳手张开的开口至少为__________.16.如图,已知电流在一定时间段内正常通过电子元件“”的概率是12,在一定时间段内,A,B之间电流能够正常通过的概率为.17.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).18.二次函数的最大值是__________.三、解答题(共66分)19.(10分)若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?20.(6分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).21.(6分)某市2012年国民经济和社会发展统计公报显示,2012年该市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全图1;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2014年新开工廉租房建设的套数要达到720套,那么2013~2014这两年新开工廉租房的套数的年平均增长率是多少?22.(8分)如图,正方形ABCD的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,点B在双曲线(x<0)上,点D在双曲线(x>0)上,点D的坐标是(3,3)(1)求k的值;(2)求点A和点C的坐标.23.(8分)如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.(1)求直线的解析式.(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.(3)点是线段的中点,将抛物线与轴正方向平移得到新抛物线,经过点,的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.24.(8分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14舞蹈8书法16摄影合计根据以上信息,解答下列问题:(1),.(2)求出的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.25.(10分)已知:如图,反比例函数的图象与一次函数的图象交于点、点.(1)求一次函数和反比例函数的解析式;(2)求的面积;(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.26.(10分)观察下列各式:﹣1×=﹣1+,﹣=﹣,﹣=﹣(1)猜想:﹣×=(写成和的形式)(2)你发现的规律是:﹣×=;(n为正整数)(3)用规律计算:(﹣1×)+(﹣)+(﹣)+…+(﹣×)+(﹣×).

参考答案一、选择题(每小题3分,共30分)1、A【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.2、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点:旋转的性质.4、C【分析】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【详解】A.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B.∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C.【点睛】本题主要考查二次函数图象与一次函数图象的综合,掌握二次函数与一次函数系数与图象的关系,是解题的关键.5、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.6、D【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ADE的面积,再加上BCED的面积即可.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∴,∵S梯形BCED=8,∴∴故选:D【点睛】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.7、C【解析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小.【详解】二次函数y=﹣(x+2)2+m图象的对称轴为直线x=﹣2,又a=-1,二次函数开口向下,∴x<-2时,y随x增大而增大,x>-2时,y随x增大而减小,而点A(﹣3,y1)到直线x=﹣2的距离最小,点C(3,y3)到直线x=﹣2的距离最大,所以y3<y2<y1.故选:C.【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的图像与性质.8、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.9、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.10、D【分析】根据反比例函数的单调性结合反比例函数的性质,即可得出反比例函数系数的正负,由此即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】∵双曲线y=,当x>2时,y随x的增大而减小,∴1-m>2,解得:m<1.故选:D.【点睛】本题考查了反比例函数的性质,解题的关键是找出1-m>2.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质,找出反比例函数系数k的正负是关键.二、填空题(每小题3分,共24分)11、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答.【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.12、100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.13、【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE和三角形OBC的面积相等,通过面积转化,可求出k的值.【详解】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.的面积与四边形的面积相等,∴四边形DEAB=8,设D点的横坐标为x,纵坐标就为∵D为OB的中点.∴∴四边形DEAB的面积可表示为:∴故答案为:【点睛】本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.14、2【分析】根据一元二次方程的解的定义,把x=2代入x2-3x+k=0得4-6+k=0,然后解关于k的方程即可.【详解】把x=2代入x2−3x+k=0得4−6+k=0,解得k=2.故答案为2.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.15、【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.【详解】设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=8mm,∠AOB=60°,∴cos∠BAC=,∴AM=8×=4(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=8(mm).故答案为:.【点睛】本题考查了正多边形和圆的知识.构造一个由半径、半边、边心距组成的直角三角形,运用锐角三角函数进行求解是解此题的关键.16、34【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是12即某一个电子元件不正常工作的概率为12则两个元件同时不正常工作的概率为14故在一定时间段内AB之间电流能够正常通过的概率为1-14=3故答案为:3417、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.【点睛】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.18、1【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值1.故答案为1.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.三、解答题(共66分)19、﹣1.【分析】设k,利用比例性质得到a=3k,b=5k,c=7k,所以9k+10k﹣28k=9,求出k后得到a、b、c的值,然后计算代数式的值.【详解】设k,则a=3k,b=5k,c=7k.∵3a+2b﹣4c=9,∴9k+10k﹣28k=9,解得:k=﹣1,∴a=﹣3,b=﹣5,c=﹣7,∴a+b﹣c=﹣3﹣5﹣(﹣7)=﹣1.【点睛】本题考查了比例的性质:灵活应用比例性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)进行计算.20、该段运河的河宽为.【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【详解】解:过作,可得四边形为矩形,,设,在中,,,在中,,,由,得到,解得:,即,则该段运河的河宽为.【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.21、(6)665套;(5);(5)55%.【解析】试题分析:(6)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,衢州市新开工的住房总数,进而得出经济适用房的套数;(5)根据申请购买经济适用房共有955人符合购买条件,经济适用房总套数为665套,得出老王被摇中的概率即可;(5)根据5565年廉租房共有6555×8%=555套,得出555(6+x)5=655,即可得出答案.试题解析:(6)6555÷56%=65556555×6.6%=665所以经济适用房的套数有665套;如图所示:(5)老王被摇中的概率为:;(5)设5565~5566这两年新开工廉租房的套数的年平均增长率为x因为5565年廉租房共有6555×8%=555(套)所以依题意,得555(6+x)5=655…解这个方程得,x6=5.5,x5=-5.5(不合题意,舍去)答:这两年新开工廉租房的套数的年平均增长率为55%.考点:6.一元二次方程的应用;5.扇形统计图;5.条形统计图;6.概率公式.22、(1)k=9,(2)A(1,0),C(0,5).【分析】(1)根据反比例函数过点D,将坐标代入即可求值,(2)利用全等三角形的性质,计算AM,AN,CH的长即可解题.【详解】解:将点D代入中,解得:k=9,(2)过点B作BN⊥x轴于N,过点D作DM⊥x轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵∠BAN+∠ABN=90°,∴∠BAN=∠ADM,∴△ABN≌△DAM(AAS),∴DM=AN=3,设A(a,0),∴N(a-3,0),∵B在上,∴BN==AM,∵OM=a=3,整理得:a2-6a+5=0,解得:a=1或a=5(舍去),经检验,a=1是原方程的根,∴A(1,0),过点D作DH⊥Y轴于H,同理可证明△DHC≌△DMA,∴CH=AM=2,∴C(0,5),综上,A(1,0),C(0,5).【点睛】本题考查了反比例函数的性质,三角形的全等,难度较大,作辅助线,通过全等得到长度是解题关键.23、(1);(2)3;(3)存在,点Q的坐标为或或或.【解析】【分析】(1)求出点A、B、E的坐标,设直线的解析式为,将点A和点E的坐标代入即可;(2)先求出直线CE解析式,过点P作轴,交CE与点F,设点P的坐标为,则点F,从而可表示出△EPC的面积,利用二次函数性质可求出x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M,当点O、N、M、H在一条直线上时,KM+MN+NK有最小值,最小值=GH,利用勾股定理求出GH即可;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为三种情况讨论求解即可.【详解】解:(1)当时,设直线的解析式为,将点A和点E的坐标代入得解得所以直线的解析式为.(2)设直线CE的解析式为,将点E的坐标代入得:解得:直线CE的解析式为如图,过点P作轴,交CE与点F设点P的坐标为,则点F则FP=∴当时,△EPC的面积最大,此时如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、MK是CB的中点,OD=1,OC=3K是BC的中点,∠OCB=60°

点O与点K关于CD对称点G与点O重合∴点G(0,0)点H与点K关于CP对称∴点H的坐标为当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH

的最小值为3.(3)如图经过点D,的顶点为点F∴点点G为CE的中点,当FG=FQ时,点或当GF=GQ时,点F与点关于直线对称点当QG=QF时,设点的坐标为由两点间的距离公式可得:,解得点的坐标为综上所述,点Q的坐标为或或或【点睛】本题考查了二次函数的图像与性质的应用,涉及的知识点主要有待定系数法求一次函数的解析式、三角函数、勾股定理、对称的坐标变换、两点间的距离公式、等腰三角形的性质及判定,综合性较强,灵活利用点坐标表示线段长是解题的关键.24、(1)50、28;(2),补全图形见解析;(3)估计选修“声乐”课程的学生有420人;(4)所抽取的2人恰好来自同一个班级的概率为.【分析】(1)由舞蹈人数及其所占百分比可得的值,声乐人数除以总人数即可求出的值;(2)总人数乘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论