2022-2023学年江苏省盐城市东台市第一教育集团数学九年级上册期末质量跟踪监视试题含解析_第1页
2022-2023学年江苏省盐城市东台市第一教育集团数学九年级上册期末质量跟踪监视试题含解析_第2页
2022-2023学年江苏省盐城市东台市第一教育集团数学九年级上册期末质量跟踪监视试题含解析_第3页
2022-2023学年江苏省盐城市东台市第一教育集团数学九年级上册期末质量跟踪监视试题含解析_第4页
2022-2023学年江苏省盐城市东台市第一教育集团数学九年级上册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A. B. C. D.2.下列二次根式是最简二次根式的是()A. B. C. D.3.如图,平行四边形ABCD的对角线AC与BD相交于点O,设,,下列式子中正确的是()A. B.;C. D..4.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.5.下列关系式中,y是x的反比例函数的是()A.y=4x B. C. D.6.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.57.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°8.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.9.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)10.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,11.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.12.如图,是一个几何体的三视图,则这个几何体是()A.长方体 B.圆柱体 C.球体 D.圆锥体二、填空题(每题4分,共24分)13.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.14.如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_____cm的地方.15.如图,在矩形ABCD中,AB=4,BC=8,将矩形沿对角线BD折叠,使点C落在点E处,BE交AD于点F,则BF的长为________.16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是______m.17.如图,反比例函数的图象与矩形相较于两点,若是的中点,,则反比例函数的表达式为__________.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果CD=4,那么AD•BD的值是_____.三、解答题(共78分)19.(8分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?20.(8分)如图,折叠边长为的正方形,使点落在边上的点处(不与点,重合),点落在点处,折痕分别与边、交于点、,与边交于点.证明:(1);(2)若为中点,则;(3)的周长为.21.(8分)已知抛物线.(1)当,时,求抛物线与轴的交点个数;(2)当时,判断抛物线的顶点能否落在第四象限,并说明理由;(3)当时,过点的抛物线中,将其中两条抛物线的顶点分别记为,,若点,的横坐标分别是,,且点在第三象限.以线段为直径作圆,设该圆的面积为,求的取值范围.22.(10分)如图,在平面直角坐标系中有点A(1,5),B(2,2),将线段AB绕P点逆时针旋转90°得到线段CD,A和C对应,B和D对应.(1)若P为AB中点,画出线段CD,保留作图痕迹;(2)若D(6,2),则P点的坐标为,C点坐标为.(3)若C为直线上的动点,则P点横、纵坐标之间的关系为.23.(10分)关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根①_______方程有两个不相等的正实根②③____________(1)请将表格中①②③补充完整;(2)已知关于的方程,若方程的两根都是正数,求的取值范围.24.(10分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.25.(12分)如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且.判断△ABC和△A′B′C′是否相似,并说明理由.26.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.

参考答案一、选择题(每题4分,共48分)1、C【解析】利用黑色区域的面积除以游戏板的面积即可.【详解】黑色区域的面积=3×33×12×23×1=4,所以击中黑色区域的概率.故选C.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.2、C【解析】根据最简二次根式的定义逐项分析即可.【详解】A.=3,故不是最简二次根式;B.=,故不是最简二次根式;C.,是最简二次根式;D.=,故不是最简二次根式;故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.3、C【分析】由平行四边形性质,得,由三角形法则,得到,代入计算即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴,∵,,在△OAB中,有,∴,∴;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.4、A【解析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.5、C【解析】根据反比例函数的定义判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选C.【点睛】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.6、B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.7、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.8、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.9、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.10、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.11、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000963,这个数据用科学记数法可表示为9.63×.

故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、B【分析】根据三视图的规律解答:主视图表示由前向后观察的物体的视图;左视图表示在侧面由左向右观察物体的视图,俯视图表示由上向下观察物体的视图,由此解答即可.【详解】解:∵该几何体的主视图和左视图都为长方形,俯视图为圆∴这个几何体为圆柱体故答案是:B.【点睛】本题主要考察简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.14、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:AB∥A′B′,∴△ABO∽△A′B′O,∴,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.15、5【解析】由翻折的性质可以知道,由矩形的性质可以知道:,从而得到,于是,故此BF=DF,在中利用勾股定理可求得BF的长.【详解】由折叠的性质知,CD=ED,BE=BC.

四边形ABCD是矩形,

在和中,

,

,

;

设BF=x,则DF=x,AF=8-x,

在中,可得:,即,

计算得出:x=5,

故BF的长为5.

因此,本题正确答案是:5【点睛】本题考查了折叠的性质折叠前后两图形全等,即对应线段相等,对应角相等,也考查了勾股定理,矩形的性质.16、10【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令,求出x的值,x的正值即为所求.【详解】在函数式中,令,得,解得,(舍去),∴铅球推出的距离是10m.【点睛】本题是二次函数的实际应用题,需要注意的是中3代表的含义是铅球在起始位置距离地面的高度;当时,x的正值代表的是铅球最终离原点的距离.17、【分析】设D(a,),则B纵坐标也为,代入反比例函数的y=,即可求得E的横坐标,则根据三角形的面积公式即可求得k的值.【详解】解:设D(a,),则B纵坐标也为,∵D是AB中点,∴点E横坐标为2a,代入解析式得到纵坐标:,∵BE=BCEC=,∴E为BC的中点,S△BDE=,∴k=1.∴反比例函数的表达式为;故答案是:.【点睛】本题考查了反比例函数的性质,以及三角形的面积公式,正确表示出BE的长度是关键.18、1【分析】先由角的互余关系,导出∠DCA=∠B,结合∠BDC=∠CDA=90°,证明△BCD∽△CAD,利用相似三角形的性质,列出比例式,变形即可得答案.【详解】解:∵∠ACB=90°,CD⊥AB于点D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD•BD=CD2=42=1,故答案为:1.【点睛】本题主要考查相似三角形的判定和性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.三、解答题(共78分)19、(1)(,x为整数),(,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,分段讨论函数的最值,进行比较即可得出最大利润及月份.【详解】解:(1)当时,;当时,设,将(4,140),(12,220)代入得,解得∴∴y与x的函数关系式为:(,x为整数),(,x为整数)(2)设生猪饲养场月利润为W,当(x为整数)时,,因为,W随x的增大而减小,所以当x取最小值1时,万元当(x为整数)时,,因为,所以当时,万元;综上所述,该饲养场一月份的利润最大,最大利润是203万元【点睛】本题考查了待定系数法求一次函数解析式,以及一次函数和二次函数的最值问题,熟练掌握待定系数法和二次函数的最值求法是解题的关键.20、(1)详见解析;(2)详见解析;(3)详见解析.【分析】(1)根据折叠和正方形的性质结合相似三角形的判定定理即可得出答案;(2)设BE=x,利用勾股定理得出x的值,再利用相似三角形的性质证明即可得出答案;(3)设BM=x,AM=a-x,利用勾股定理和相似三角形的性质即可得出答案.【详解】证明:(1)∵四边形是正方形,∴,∴,∵为折痕,∴,∴,∴,在与中∵,,∴;(2)∵为中点,∴,设,则,在中,,∴,即,∴,∴,,由(1)知,,∴,∴,,∴;(3)设,则,,在中,,∴,即,解得:,由(1)知,,∴,∵,∴.【点睛】本题考查的是相似三角形的综合,涉及的知识点有折叠的性质、正方形的性质、勾股定理和相似三角形,难度系数较大.21、(1)抛物线与轴有两个交点;(2)抛物线的顶点不会落在第四象限,理由详见解析;(3).【分析】(1)将,代入解析式,然后求当y=0时,一元二次方程根的情况,从而求解;(2)首先利用配方法求出顶点坐标,解法一:假设顶点在第四象限,根据第四象限点的坐标特点列不等式组求解;解法二:设,,则,分析一次函数图像所经过的象限,从而求解;(3)将点代入抛物线,求得a的值,然后求得抛物线解析式及顶点坐标,分别表示出A,B两点坐标,并根据点A位于第三象限求得t的取值范围,利用勾股定理求得的函数解析式,从而求解.【详解】解:(1)依题意,将,代入解析式得抛物线的解析式为.令,得,,∴抛物线与轴有两个交点.(2)抛物线的顶点不会落在第四象限.依题意,得抛物线的解析式为,∴顶点坐标为.解法一:不妨假设顶点坐标在第四象限,则,解得.∴该不等式组无解,∴假设不成立,即此时抛物线的顶点不会落在第四象限.解法二:设,,则,∴该抛物线的顶点在直线上运动,而该直线不经过第四象限,∴抛物线的顶点不会落在第四象限.(3)将点代入抛物线:,得,化简,得.∵,∴,即,∴此时,抛物线的解析式为,∴顶点坐标为.当时,,∴.当时,,∴.∵点在第三象限,∴∴.又,,∴点在点的右上方,∴.∵,∴当时,随的增大而增大,∴.又.∵,∴随的增大而增大,∴.【点睛】本题属于二次函数综合题,综合性较强,掌握二次函数的图像性质利用属性结合思想解题是本题的解题关键.22、(1)见解析;(2)(4,4),(3,1);(3).【分析】(1)根据题意作线段CD即可;(2)根据题意画出图形即可解决问题;(3)因为点C的运动轨迹是直线,所以点P的运动轨迹也是直线,找到当C坐标为(0,0)时,P'的坐标,利用待定系数法即可求出关系式.【详解】(1)如图所示,线段CD即为所求,(2)如图所示,P点坐标为(4,4),C点坐标为(3,1),故答案为:(4,4),(3,1).(3)如图所示,∵点C的运动轨迹是直线,∴点P的运动轨迹也是直线,当C点坐标为(3,1)时,P点坐标为(4,4),当C点坐标为(0,0)时,P'的坐标为(3,2),设直线PP'的解析式为,则有,解得,∴P点横、纵坐标之间的关系为,故答案为:.【点睛】本题考查网格作图和一次函数的解析式,熟练掌握旋转变换的特征是解题的关键.23、(1)①方程有一个负实根,一个正实根;②详见解析;③;(2)【分析】(1)根据函数的图象与性质即可得;(2)先求出方程的根的判别式,再利用③即可得出答案.【详解】(1)由函数的图象与性质得:①函数图象与x的负半轴和正半轴各有一个交点,则方程有一个负实根,一个正实根;②函数图象与x轴的两个交点均在x轴的正半轴上,画图如下所示:;③由②可得:;(2)方程的根的判别式为,则此方程有两个不相等的实数根由题意,可利用③得:,解得则方程组的解为故k的取值范围是.【点睛】本题考查了一元二次方程与二次函数的关系,掌握二次函数的图象与性质是解题关键.24、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论