版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
旋转一、图形的旋转1.旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角.注意:在旋转过程中保持不动的点是旋转中心.2.旋转的三个要素:旋转中心、旋转的角度和方向.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连结各点,得到原图形旋转后的图形.例1.如图,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以点C为中心旋转到△A′B′C的位置,使B在斜边A′B′上,A′C与AB相交于D,试确定∠BDC的度数.二、中心对称1.中心对称和对称中心:把一个图形绕着某一点旋转180°后,如果它能和另一个图形完全重合,那么称这两个图形成中心对称,这个点叫做对称中心.这两个图形中的对应点,叫做关于中心的对称点.2.中心对称图形:在平面内,某一图形绕某一点旋转180°后能与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.3.关于中心对称的作图:(1)确定对称中心;(2)确定关键点;(3)作关键点的关于对称中心的对称点;(4)连结各点,得到所需图形.4.关于原点对称的点的坐标:(a,b)关于原点的对称点是(-a,-b)
例2.下列图形中,中心对称图形是
(
)例5.下列图形中,既是中心对称又是轴对称的图形是(
)例3.把正方形ADCB绕着点A,按顺时针方向旋转得到正方形AGFE,边BC与GF交于点H(如图).试问线段GH与线段HB相等吗?请先观察猜想,然后再证明你的猜想.例4、点P(-1,3)关于原点对称的点的坐标是
;点P(-1,3)绕着原点顺时针旋转90o与P’重合,则P’的坐标为
;三、旋转的应用:例5.已知E、F分别在正方形ABCD边AB和BC上,AB=1,∠EDF=45°.求△BEF的周长.一、选择题1.(苏州)下列图形中,旋转600后可以和原图形重合的是(
)A、正六边形
B、正五边形
C、正方形
D、正三角形2.(眉山)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是(
)A、甲
B、乙
C、丙
D、丁3.(南平)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是(
)A、50°
B、60°
C、70°
D、80°4.(安徽)在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转900得到OA′,则点A′的坐标是(
)A、(-4,3)
B、(-3,4)
C、(3,-4)
D、(4,-3)5.(济宁)在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为(
)A、(-2,1)
B、(1,1)
C、(-1,1)
D、(5,1)6.(嘉兴)如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90其中,能将△ABC变换成△PQR的是()A、①②
B、①③
C、②③
D、①②③7.(黑龙江)在下列四个图案中,既是轴对称图形,又是中心对称图形的是(
)A
B
C
D8.(潍坊)如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为(
)A、
B、
C、
D、9.如果两个图形可通过旋转而相互得到,则下列说法中正确的有(
).①对应点连线的中垂线必经过旋转中心.②这两个图形大小、形状不变.③对应线段一定相等且平行.④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.A.1个
B.2个
C.3个
D.4个10.如图1,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心(
).A.顺时针旋转60°得到
B.顺时针旋转120°得到C.逆时针旋转60°得到
D.逆时针旋转120°得到图1
图2
图311.如图2,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有(
).A.1对
B.2对
C.3对
D.4对12.如图3,△ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,则下列结论中错误的是(
).A.M是BC的中点
B.C.CF⊥AD
D.FM⊥BC13.如图4,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点;△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有(
).①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.②A′O′+O′O=AO+BO.③A′P′+P′P=PA+PB.
④PA+PB+PC>AO+BO+CO.
A.1个
B.2个
C.3个
D.4个图414.在下图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是(
)
(A)点A
(B)点B(C)点C
(D)点D二、填空题1.(邵阳)如图,若将△ABC绕点O顺时针旋转180°后得到△A'B'C',则A点的对应点A'点的坐标是_____________.2.(江阴)如图,已知梯形ABCD中,AD∥BC,∠B=90°,AD=3,BC=5,AB=1,把线段CD绕点D逆时针旋转90°到DE位置,连结AE,则AE的长为
.3.(青岛)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P'AB,则点P与点P'之间的距离为_______,∠APB=______°.4.(东营)在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.5.如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________.6.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC
(填“>”、“<”或“=”).7.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=________.图6
图7
图8
图98.如图,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为_____________,图中除△ABC外,还有等边三形是_____________.9.如图Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有_____________.三、解答题1.(大连)如图,已知△ABC和△A″B″C″及点O.⑴画出△ABC关于点O对称的△A′B′C′;⑵若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置;⑶探究线段OO′与线段CC″之间的关系,并说明理由.2.(衡阳)已知,如图□ABCD中,AB⊥AC,AB=1,BC=,对角线AC、BD交于0点,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数.3.(聊城)如图,在由边长为的小正方形组成的方格纸中,有两个全等的三角形,即和.(1)请你指出在方格纸内如何运用平移、旋转变换,将重合到上;(2)在方格纸中将经过怎样的变换后可以与成中心对称图形?画出变换后的三角形并标出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- HY/T 0399-2024渤海和黄海海冰卫星遥感监测规范
- 一年级数学(上)计算题专项练习集锦
- 物流风险管理与应对措施培训
- 培养学生的探索精神与品德计划
- 酒店多语言服务技巧培训
- 关注儿童心理健康的工作策略计划
- 商品寄售合同三篇
- 信阳师范大学《操作系统》2021-2022学年第一学期期末试卷
- 高效会议的时间管理技巧计划
- 酒店保安员培训
- 品牌管理 课件 第11章 品牌IP打造
- 小学数学动手能力培养与研究课题研究汇编
- 厦门大学2023年826物理化学考研真题(含答案)
- 本量利分析和差量分析法的应用课件
- 国外医学教育模式比较与我国医学教育学制改革
- 2023企业商学院规划方案
- ASCE7-05风荷载计算EXCEL表格
- 个人职业生涯SWOT分析的成功案例
- 支教沟通协商方案
- 《工作中沟通技巧》课件
- 军事知识常识小学生
评论
0/150
提交评论