2022年怒江市重点中学数学九上期末学业水平测试模拟试题含解析_第1页
2022年怒江市重点中学数学九上期末学业水平测试模拟试题含解析_第2页
2022年怒江市重点中学数学九上期末学业水平测试模拟试题含解析_第3页
2022年怒江市重点中学数学九上期末学业水平测试模拟试题含解析_第4页
2022年怒江市重点中学数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个2.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤3.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.24.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤5.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是()A. B.C. D.6.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是”7.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.8.方程x2-2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=-29.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米 B.米 C.米 D.米10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.3二、填空题(每小题3分,共24分)11.如图,C,D是抛物线y=(x+1)2﹣5上两点,抛物线的顶点为E,CD∥x轴,四边形ABCD为正方形,AB边经过点E,则正方形ABCD的边长为_____.12.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.13.如图,中,已知,,点在边上,.把线段绕着点逆时针旋转()度后,如果点恰好落在的边上,那么__________.14.在一个不透明的袋子中装有个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是___________.15.已知,则=_____.16.二次函数的部分图像如图所示,要使函数值,则自变量的取值范围是_______.17.一元二次方程x2=2x的解为________.18.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.三、解答题(共66分)19.(10分)京剧脸谱是京剧艺术独特的表现形式,现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率(图案为“红脸”的两张卡片分别记为、,图案为“黑脸”的卡片记为).20.(6分)女本柔弱,为母则刚,说的是母亲对子女无私的爱,母爱伟大,值此母亲节来临之际,某花店推出一款康乃馨花束,经过近几年的市场调研发现,该花束在母亲节的销售量(束)与销售单价(元)之间满足如图所示的一次函数关系,已知该花束的成本是每束100元.(1)求出关于的函数关系式(不要求写的取值范围);(2)设该花束在母亲节盈利为元,写出关于的函数关系式:并求出当售价定为多少元时,利润最大?最大值是多少?(3)花店开拓新的进货渠道,以降低成本.预计在今后的销售中,母亲节期间该花束的销售量与销售单价仍存在(1)中的关系.若想实现销售单价为200元,且销售利润不低于9900元的销售目标,该花束每束的成本应不超过多少元.21.(6分)如图,是的直径,,,连接交于点.(1)求证:是的切线;(2)若,求的长.22.(8分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.23.(8分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.24.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.(1)求该抛物线的解析式,并用配方法把解析式化为的形式;(2)若点在上,连接,求的面积;(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?25.(10分)如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.26.(10分)用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18m(1)若围成的面积为72m2,球矩形的长与宽;(2)菜园的面积能否为120m2,为什么?

参考答案一、选择题(每小题3分,共30分)1、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,

解得:,(不合题意,舍去),当x<0时,,即:,

解得:,,∴函数的图象上的“好点”共有3个.

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.2、C【解析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到的度数为90°,故选项①正确;又因OD=OB,所以△BOD为等腰直角三角形,由∠A和∠ACB的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB与圆切线,根据切线的性质得到∠OBA为直角,求出∠CBO=∠OBA-∠ABC=90°-75°=15°,由根据∠BOE为直角,求出∠OEB=180°-∠BOD-∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确;由D不一定为AC中点,即CD不一定等于AD,而选项③不一定成立;又由△OBD为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC,由相似三角形性质和平行线的性质,得比例,由BD=OD,等量代换即可得到BE等=DE,故选项⑤正确.综上,正确的结论有4个.

故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.3、C【分析】作OE⊥AC交⊙O于F,交AC于E,连接CO,根据折叠的性质得到OE=OF,根据直角三角形的性质求出∠CAB,再得到∠COB,再分别求出S△ACO与S扇形BCO即可求解..【详解】作OE⊥AC交⊙O于F,交AC于E,由折叠的性质可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,连接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴线段、和弧所围成的曲边三角形的面积为S△ACO+S扇形BCO===≈3.8故选C.【点睛】本题考查的是翻折变换的性质、圆周角定理,扇形的面积求解,解题的关键是熟知折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.5、B【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x,依题意得:故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.6、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为.为可能事件.D正确.三角形内角和是180°.故选:D.【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.7、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.8、C【解析】根据因式分解法解一元二次方程的方法,提取公因式x可得x(x-2)=0,然后按照ab=0的形式的方程解法,可得x=0或x-2=0,解得x1=0,x2=2.故选C.点睛:本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.9、B【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【详解】解:作AD⊥BC于点D,则BD=+0.3=,∵cosα=,∴cosα=,解得,AB=米,故选B.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.10、D【分析】已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.二、填空题(每小题3分,共24分)11、【分析】首先设AB=CD=AD=BC=a,再根据抛物线解析式可得E点坐标,表示出C点横坐标和纵坐标,进而可得方程﹣5﹣a=﹣5,再解即可.【详解】设AB=CD=AD=BC=a,∵抛物线y=(x+1)2﹣5,∴顶点E(﹣1,﹣5),对称轴为直线x=﹣1,∴C的横坐标为﹣1,D的横坐标为﹣1﹣,∵点C在抛物线y=(x+1)2﹣5上,∴C点纵坐标为(﹣1+1)2﹣5=﹣5,∵E点坐标为(﹣1,﹣5),∴B点纵坐标为﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合题意,舍去),故答案为:.【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知二次函数的图像与性质、正方形的性质.12、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.13、或【分析】分两种情况:①当点落在AB边上时,②当点落在AB边上时,分别求出的值,即可.【详解】①当点落在AB边上时,如图1,∴DB=DB′,∴∠B=∠DB′B=55°,∴∠BDB′=180°-55°-55°=70°;②当点落在AB边上时,如图2,∴DB=DB′=2CD,∵,∴∠CB′D=30°,∴∠BDB′=30°+90°=120°.故答案是:或.【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.14、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】解:画树状图得:∵共有9种等可能的结果,两次都摸到红球的只有4种情况,

∴两次都摸到红球的概率是:.

故答案为.【点睛】此题考查的是用列表法或树状图法求概率的知识.正确的列出树状图是解决问题的关键.15、【解析】根据题意,设x=5k,y=3k,代入即可求得的值.【详解】解:由题意,设x=5k,y=3k,∴==.故答案为.【点睛】本题考查了分式的求值,解题的关键是根据分式的性质对已知分式进行变形.16、【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,

根据抛物线的对称性,则点关于对称性对称的另一个点为,

所以时,的取值范围是.故答案为:.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点的对称点是解题的关键.17、x1=0,x1=1【解析】试题分析:移项得x1-1x=0,即x(x-1)=0,解得x=0或x=1.考点:解一元二次方程18、y=(x+2)2-1【分析】根据函数图象的平移规律解答即可得到答案【详解】由题意得:平移后的函数解析式是,故答案为:.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,正确掌握平移的规律并运用解题是关键.三、解答题(共66分)19、抽出的两张卡片上的图案都是“红脸”的概率是.【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图如图由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片都是“红脸”的结果有4种,所以(两张都是“红脸”)答:抽出的两张卡片上的图案都是“红脸”的概率是.【点睛】此题主要考查了概率的求法.用到的知识点为树状图和概率的求法,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.20、(1);(2),240,9800;(3)1.【分析】(1)根据题目中所给的图象,确定一次函数图象经过点,,再利用待定系数法求出关于的函数关系式即可;(2)根据“总利润=单件的利润×销售量”列出W与x的二次函数关系式,再利用二次函数的性质求解即可;(3)根据题意可以列出相应的不等式,从而可以解得该花束每束的成本.【详解】解:(1)设一次函数关系式为,由题图知该函数图象过点,,则,解得,∴关于的函数关系式为(2)由题知,∴当时,有最大值,最大值为9800元;(3)设该花束每束的成本为元,由题意知,解得.答:该花束每束的成本应不超过1元.【点睛】本题考查二次函数的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.21、(1)证明见解析;(2).【分析】(1)根据题意先由BC=BA求出∠ACB=∠CAB,再根据三角形内角和求出∠ABC=90°,即可得出结论;(2)根据题意先求出半径OD,再根据勾股定理即可求出OC,进而得出CD.【详解】解:(1)证明:,,,,即,因此是的切线.(2)由(1)可知,,是的直径,,,,.【点睛】本题考查圆的切线的判定和等腰三角形的性质以及勾股定理,熟练掌握切线的判定方法,并据此进行推理计算是解决问题的关键.22、(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【分析】(1)根据已知条件先求得,,将、坐标代入,再求得、,最后将其代入即可得解;(2)假设存在符合条件的点,并设点的横坐标,然后根据已知条件用含的式子表示出、的坐标,再利用坐标平面内距离公式求得、间的距离,将其进行配方即可进行判断并求解;(3)分、两种情况进行讨论,求得相应的符合要求的点坐标即可.【详解】解:(1)∵抛物线直线相交于、∴当时,;当时,,则∴,∴把代入得∴∴(2)假设存在符合条件的点,并设点的横坐标则、∴∵∴有最大值当时,长度的最大值为,此时点的坐标为(3)①当时∵直线垂直于直线∴可设直线的解析式为∵直线过点∴∴∴直线的解析式为∴∴或(不合题意,舍去)∴此时点的坐标为∴当时,∴此时点的坐标为;②当时∴点的纵坐标与点的纵坐标相等即∴∴解得(舍去)∴当时,∴此时点的坐标为.∴综上所述,符合条件的点存在,为直角三角形时点的坐标为或.故答案是:(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【点睛】本题考查了二次函数与一次函数的综合应用,涉及到了动点问题、最值问题、用待定系数法求解析式、方程组问题等,充分考查学生的综合运用能力和数形结合的思想方法.23、(1)①45°,②;(2)①,理由见解析,②见解析;(3)或【分析】(1)①由等腰直角三角形的性质得出,由旋转的性质得:,,证明,即可得出结果;②由①得,求出,作于,则是等腰直角三角形,证出是等腰直角三角形,求出,证出四边形是矩形,再由垂直平分线的性质得出,即可得出结论;(2)①证明,即可得出;②由垂直的定义得出,由相似三角形的性质得出,即可得出结论;(3)存在两种情况:①当时,证出,由勾股定理求出,即可得出结果;②当时,得出即可.【详解】解:(1)①,,,由旋转的性质得:,,在和中,,,;故答案为:;②当时,四边形是正方形;理由如下:由①得:,,作于,如图所示:则是等腰直角三角形,,,,,是等腰直角三角形,,,又,四边形是矩形,又垂直平分,,四边形是正方形;故答案为:;(2)①,理由如下:由旋转的性质得:,,,,,;②,,由①得:,,又,四边形是矩形;(3)在点的运动过程中,若恰好为等腰三角形,存在两种情况:①当时,则,,,,,,,,;②当时,;综上所述:若恰好为等腰三角形,此时的长为或.【点睛】本题是四边形综合题目,考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、矩形的判定、正方形的判定、相似三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握旋转的性质,证明三角形相似是解决问题的关键,注意分类讨论.24、(1);(2);(3)【解析】(1)将A,B两点的坐标代入抛物线解析式中,得到关于a,b的方程组,解之求得a,b的值,即得解析式,并化为顶点式即可;(2)过点A作AH∥y轴交BC于H,BE于G,求出直线BC,BE的解析式,继而可以求得G、H点的坐标,进一步求出GH,联立BE与抛物线方程求出点F的坐标,然后根据三角形面积公式求出△FHB的面积;(3)设点M坐标为(2,m),由题意知△OMB是直角三角形,进而利用勾股定理建立关于m的方程,求出点M的坐标,从而求出MD,最后求出时间t.【详解】(1)∵抛物线与轴交于A(1,0),B(3,0)两点,∴∴∴抛物线解析式为.(2)如图1,

过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=x-2,∵H(1,y)在直线BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直线BE解析式为y=-x-1,∴G(1,-),∴GH=,∵直线BE:y=-x-1与抛物线y=-x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论