版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.2.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是63.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x44.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A.①② B.②③ C.①④ D.③④5.下列关于事件发生可能性的表述,正确的是()A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为6.直线y=3x+1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.﹣的绝对值是()A.﹣ B. C.﹣2 D.28.下列运算中正确的是()A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a39.下列美丽的图案中,不是轴对称图形的是()A. B. C. D.10.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=二、填空题(本大题共6个小题,每小题3分,共18分)11.若3,a,4,5的众数是4,则这组数据的平均数是_____.12.如图所示,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=,若将菱形向右平移,菱形的两个顶点B、C恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.13.分解因式:=______.14.关于的一元二次方程有两个相等的实数根,则的值等于_____.15.如图,Rt△ABC中,∠C=90°,AB=10,,则AC的长为_______.16.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.三、解答题(共8题,共72分)17.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.18.(8分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)19.(8分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知和的顶点都在格点上,线段的中点为.(1)以点为旋转中心,分别画出把顺时针旋转,后的,;(2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形,四边形的形状;②直接写出的值;③设的三边,,,请证明勾股定理.20.(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.21.(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.22.(10分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.分别求每台型,型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?23.(12分)已知关于的一元二次方程(为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.24.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故选A.2、D【解析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.3、D【解析】A.x4+x4=2x4,故错误;B.(x2)3=x6,故错误;C.(x﹣y)2=x2﹣2xy+y2,故错误;D.x3•x=x4,正确,故选D.4、B【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误将A(1,2)代入y=ax2+bx,则2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正确;由正弦定义sinα=,则③正确;不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x≥1或x≤0,则④错误.故答案为:B.【点睛】二次函数的图像,sinα公式,不等式的解集.5、C【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A.事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B.体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D.掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.6、D【解析】
利用两点法可画出函数图象,则可求得答案.【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.7、B【解析】
根据求绝对值的法则,直接计算即可解答.【详解】,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.8、A【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】解:A、x2÷x8=x-6,故该选项正确;
B、a•a2=a3,故该选项错误;
C、(a2)3=a6,故该选项错误;
D、(3a)3=27a3,故该选项错误;
故选A.【点睛】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.9、A【解析】
根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.12、【解析】解:连接AC,交y轴于D.∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2).∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.故答案为y=.点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.13、x(x+2)(x﹣2).【解析】试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用;因式分解.14、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△<0,方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.15、8【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.16、8【解析】
根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.三、解答题(共8题,共72分)17、【解析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:,,.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.18、10【解析】试题分析:如图:过点C作CD⊥AB于点D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同样在Rt△BCD中,可得BD=0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CD⊥AB于点D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.19、(1)见解析;(2)①正方形;②;③见解析.【解析】
(1)根据旋转作图的方法进行作图即可;(2)①根据旋转的性质可证AC=BC1=B1C2=B2C3,从而证出四边形CC1C2C3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB1B2是正方形;②根据相似图形的面积之比等相似比的平方即可得到结果;③用两种不同的方法计算大正方形的面积化简即可得到勾股定理.【详解】(1)如图,(2)①四边形CC1C2C3和四边形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根据旋转的性质可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四边形CC1C2C3和四边形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四边形CC1C2C3和四边形ABB1B2是正方形.②∵四边形CC1C2C3和四边形ABB1B2是正方形,∴四边形CC1C2C3∽四边形ABB1B2.∴=∵AB=,CC1=,∴==.③四边形CC1C2C3的面积==,四边形CC1C2C3的面积=4△ABC的面积+四边形ABB1B2的面积=4+=∴=,化简得:=.【点睛】本题考查了旋转作图和旋转的性质,正方形的判定和性质,勾股定理,掌握相关知识是解题的关键.20、证明见解析.【解析】
由圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点,继而可得EM=EN,即可证得:PE⊥PF.【详解】∵四边形内接于圆,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.21、(1)BH为10米;(2)宣传牌CD高约(40﹣20)米【解析】
(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.【详解】(1)过B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=AB=×20=10(米),即点B距水平面AE的高度BH为10米;(2)过B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=10,AH=10,∴BG=AH+AE=(10+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(10+30)米,∴CE=CG+GE=CG+BH=10+30+10=10+40(米),在Rt△AED中,=tan∠DAE=tan60°=,DE=AE=30∴CD=CE﹣DE=10+40﹣30=40﹣20.答:宣传牌CD高约(40﹣20)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.22、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一:型挖据机7台,型挖掘机5台;方案二:型挖掘机8台,型挖掘机4台;方案三:型挖掘机9台,型挖掘机3台.当A型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.所以,共有三种调配方案.方案一:当时,,即型挖据机7台,型挖掘机5台;方案二:当时,,即型挖掘机8台,型挖掘机4台;方案三:当时,,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.23、(1)证明见解析;(2)或.【解析】
(1)求出△的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.【详解】(1)依题意,得,,.∵,∴方程总有两个实数根.(2)∵,∴,.∵方程的两个实数根都是整数,且是正整数,∴或.∴或.【点睛】本题考查的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气候变化下农业生态系统的适应性调整研究进展
- 物联网技术在智能家居生态圈的应用前景
- 国庆节秋天主题活动方案
- 现代办公楼电力维护成本深度剖析
- 现代物流技术与医疗行业互补与共进
- Unit 4 Friends Forever Understanding ideas 说课稿-2024-2025学年高中英语外研版(2019)必修第一册001
- 2023八年级物理上册 第四章 在光的世界里第6节 神奇的眼睛说课稿(新版)教科版
- 6《观察土壤》说课稿-2023-2024学年科学四年级下册教科版
- 2023二年级语文上册 第八单元 24 风娃娃说课稿 新人教版
- 18《文言文二则 铁杵成针》(说课稿)2023-2024学年-统编版四年级语文下册
- 2025中考英语作文预测:19个热点话题及范文
- 第10讲 牛顿运动定律的综合应用(一)(讲义)(解析版)-2025年高考物理一轮复习讲练测(新教材新高考)
- 班组建设与班组长管理培训
- 读书分享-自驱型成长-如何科学有效地培养孩子的自律
- 2024秋期国家开放大学本科《纳税筹划》一平台在线形考(形考任务一至五)试题及答案
- 2023年西安经济技术开发区管委会招聘考试真题
- 静脉治疗护理技术操作标准(2023版)解读 2
- 2024年全国各地中考试题分类汇编(一):现代文阅读含答案
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
- 武强县华浩数控设备科技有限公司年产9000把(只)提琴、吉他、萨克斯等乐器及80台(套)数控雕刻设备项目环评报告
- 安全生产法律法规汇编(2024年4月)
评论
0/150
提交评论