2022届西藏林芝地区第一中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
2022届西藏林芝地区第一中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
2022届西藏林芝地区第一中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
2022届西藏林芝地区第一中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
2022届西藏林芝地区第一中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市总计愿生452065不愿生132235总计5842100附表:0.0500.0100.0013.8416.63510.828由算得,,参照附表,得到的正确结论是()A.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”C.有以上的把握认为“生育意愿与城市级别有关”D.有以上的把握认为“生育意愿与城市级别无关”2.若焦点在轴上的双曲线的离心率为,则该双曲线的一个顶点到其中一条渐近线的距离为()A. B. C. D.3.给出下列三个命题:命题1:存在奇函数和偶函数,使得函数是偶函数;命题2:存在函数、及区间,使得、在上均是增函数,但在上是减函数;命题3:存在函数、(定义域均为),使得、在处均取到最大值,但在处取到最小值.那么真命题的个数是().A. B. C. D.4.已知函数,若方程有五个不同的实数根,则的取值范围是()A.(0,+∞) B.(0,1) C.(-∞,0) D.(0,)5.从10名男生6名女生中任选3人参加竞赛,要求参赛的3人中既有男生又有女生,则不同的选法有()种A.1190 B.420 C.560 D.33606.给出下列命题:①命题“若,则方程无实根”的否命题;②命题“在中,,那么为等边三角形”的逆命题;③命题“若,则”的逆否命题;④“若,则的解集为”的逆命题;其中真命题的序号为()A.①②③④ B.①②④ C.②④ D.①②③7.设函数在上可导,其导函数为,且函数在处取得极大值,则函数的图象可能是A. B.C. D.8.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于4”;事件B:“甲、乙两骰子的点数之和等于7”,则的值等于()A. B. C. D.9.已知的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A. B. C. D.10.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.11.(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为A.1 B.2C.4 D.812.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有第一节第二节第三节第四节地理B层2班化学A层3班地理A层1班化学A层4班生物A层1班化学B层2班生物B层2班历史B层1班物理A层1班生物A层3班物理A层2班生物A层4班物理B层2班生物B层1班物理B层1班物理A层4班政治1班物理A层3班政治2班政治3班A.8种 B.10种 C.12种 D.14种二、填空题:本题共4小题,每小题5分,共20分。13.已知命题“,”为假命题,则的取值范围是__________.14.已知随机变量X服从正态分布N(3.1),且P(2≤X≤4)=0.6826,则p(X>4)=15.若函数有零点,则实数的取值范围是___________.16.已知函数f(x)=|lnx|,0<x≤e3-x+e3+3,x>e三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=ex,g(x)=lnx.(1)设f(x)在x1处的切线为l1,g(x)在x2处的切线为l2,若l1//l2,求x1+g(x2)的值;(2)若方程af2(x)-f(x)-x=0有两个实根,求实数a的取值范围;(3)设h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]内单调递减,求实数b的取值范围.18.(12分)一盒中放有的黑球和白球,其中黑球4个,白球5个.(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率;(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.19.(12分)如图,在正方体中,分别是的中点.求证:(1)求证:平面(2)求异面直线与所成角的余弦值.20.(12分)在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.21.(12分)己知抛物线的顶点在原点,焦点为.(Ⅰ)求抛物线的方程;(Ⅱ)是抛物线上一点,过点的直线交于另一点,满足与在点处的切线垂直,求面积的最小值,并求此时点的坐标。22.(10分)已知向量,设函数(1)求的最小正周期(2)求函数的单调递减区间(3)求在上的最大值和最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,本题选择C选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.2、C【解析】

先由双曲线的离心率的值求出的值,然后求出双曲线的顶点坐标和渐近线方程,再利用点到直线的距离公式可求出结果【详解】解:因为焦点在轴上的双曲线的离心率为,所以,解得,所以双曲线方程为,其顶点为,渐近线方程为由双曲线的对称性可知,只要求出其中一个顶点到一条渐近线的距离即可不妨求点到直线的距离故选:C【点睛】此题考查了双曲线的有关知识和点到直线的距离公式,属于基础题3、D【解析】对于命题1,取,,满足题意;对于命题2,取,,满足题意;对于命题3,取,,满足题意;即题中所给的三个命题均为真命题,真命题的个数是.本题选择D选项.4、D【解析】

由方程的解与函数图象的交点关系得:方程有五个不同的实数根等价于的图象与的图象有5个交点,作图可知,只需与曲线在第一象限有两个交点即可。利用导数求过某点的切线方程得:过原点的直线与相切的直线方程为,即所求的取值范围为,得解.【详解】设,则的图象与的图象关于原点对称,方程有五个不同的实数根等价于函数的图象与的图象有5个交点,由图可知,只需与曲线在第一象限有两个交点即可,设过原点的直线与切于点,,由,则过原点的直线与相切,,又此直线过点,所以,所以,即(e),即过原点的直线与相切的直线方程为,即所求的取值范围为,故选.【点睛】本题主要考查了方程的解与函数图象的交点个数问题的关系应用及利用导数求切线方程。5、B【解析】

根据分类计数原理和组合的应用即可得解.【详解】要求参赛的3人中既有男生又有女生,分为两种情况:第一种情况:1名男生2名女生,有种选法;第二种情况:2名男生1名女生,有种选法,由分类计算原理可得.故选B.【点睛】本题考查分类计数原理和组合的应用,属于基础题.6、A【解析】

①写出其否命题,再判断真假;②写出其逆命题,再判断真假;③根据原命题与逆否命题真假性相同,直接判断原命题的真假即可;④写出其逆命题,再判断真假.【详解】①命题“若,则方程无实根”的否命题为:“若,则方程有实根”,为真命题,所以正确.②命题“在中,,那么为等边三角形”的逆命题为:“若为等边三角形,则”为真命题,所以正确.③命题“若,则”为真命题,根据原命题与逆否命题真假性相同,所以正确.④“若,则的解集为”的逆命题为:“若的解集为,则”当时,不是恒成立的.当时,则解得:,所以正确.故选:A【点睛】本题考查四种命题和互化和真假的判断,属于基础题.7、D【解析】

因为-2为极值点且为极大值点,故在-2的左侧附近>0,-2的右侧<0,所以当x>-2且在-2的右侧附近时,排除BC,当x<-2且在-2的左侧附近时,,排除AC,故选D8、C【解析】本小题属于条件概率所以事件B包含两类:甲5乙2;甲6乙1;所以所求事件的概率为9、A【解析】由题意可得:,由二项式系数的性质可得:奇数项的二项式系数和为.本题选择A选项.点睛:1.二项展开式的通项是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.10、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.11、C【解析】设公差为,,,联立解得,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,若,则.12、B【解析】

根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先根据命题真假得恒成立,即得的最大值.详解:因为命题为假命题,所以恒成立,所以的最大值.点睛:根据命题与命题否定的真假性关系进行转化,即特称命题为假命题,则对应全称命题为真命题,再根据恒成立知识转化为对应函数最值问题.14、0.1587【解析】

P(3≤X≤4)=12P(2≤X≤4)=0.3413,

观察如图可得,

∴P(X>4)=0.5-P(3≤X≤4)=0.5-0.3413

=0.1587考点:正态分布点评:随机变量~N(μ,δ2)中,15、【解析】

变换得到,设,求导得到单调性,画出图像得到答案.【详解】由题可知函数的定义域为函数有零点,等价于有实数根,即,设,则.则函数在上单调递增,在上单调递减,且,画出图像,如图所示:根据图像知.故答案为:.【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.16、1【解析】试题分析:由题意得,0<lnx2<3⇒1<x2<e3,因为存在x1<x2<x3,f(x1)=f(考点:分段函数的性质及利用导数求解函数的最值.【方法点晴】本题主要考查了分段函数的图象与性质、利用导数研究函数的单调性与极值、最值,着重考查了学生分析、解答问题的能力,同时考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,先确定1<x2<三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.(2)0<a<1.(3)b≥ln2+.【解析】分析:(1)求导,利用l1//l2时k值相等,即可求出答案;(2)参变分离,利用导数的应用以及数形结合即可得到答案;(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),求导,因为h(x)在[ln2,ln3]内单调递减,所以在[ln2,ln3]上恒成立,再参变分离,分析讨论即可.详解:(1)f′(x)=ex,g′(x)=由题意知:=故x1+g(x2)=x1-ln=0.(2)方程af2(x)-f(x)-x=0,ae2x-ex-x=0,a=令φ(x)=,则φ′(x)=-当x<0时,ex<1,ex-1<0,所以ex+2x-1<0,所以φ′(x)>0,故φ(x)单调增;当x>0时,ex>1,ex-1>0,所以ex+2x-1>0,所以φ′(x)<0,故φ(x)单调减.从而φ(x)max=φ(0)=1又,当x>0时,φ(x)=>0原方程有两个实根等价于直线y=a与φ(x)的图像有两个交点,故0<a<1.(3)由题意h(x)=f(x)(g(x)-b)=ex(lnx-b),得h′(x)=ex(lnx+-b)因为h(x)在[ln2,ln3]内单调递减,所以h′(x)=ex(lnx+-b)≤0在[ln2,ln3]内恒成立由于ex>0,故只需lnx+-b≤0在[ln2,ln3]内恒成立即b≥lnx+在[ln2,ln3]内恒成立令t(x)=lnx+,t′(x)=-=当ln2≤x<1时,t′(x)<0,故t(x)单调减;当1≤x≤ln3时,t′(x)>0,故t(x)单调增.下面只要比较t(ln2)与t(ln3)的大小.思路:[详细过程略]先证明:x1+x2>2又,ln2+ln3=ln6<2故当x1=ln2时,ln3<x2即t(ln3)<t(ln2)所以t(x)max=t(ln2)=ln2+所以b≥ln2+.点睛:由函数的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)(f′(x)在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.18、(1)(2)【解析】

(1)先求从盒中同时摸出两个球时的总事件数,再求两球颜色恰好相同的事件数,最后根据古典概型概率公式求解;(2)先求从盒中摸出一个球,放回后再摸出一个球的总事件数,再求两球颜色恰好不同的事件数,最后根据古典概型概率公式求解.【详解】解:①②【点睛】本题考查古典概型概率,考查基本分析求解能力,属基础题19、(1)见解析;(2)【解析】

(1)取的中点,连接,证明四边形是平行四边形,从而,进而可得平面;(2)设出正方体的棱长,利用向量的加法和数量积求出,根据向量的夹角公式可求出异面直线与所成角的余弦值.【详解】(1)取的中点,连接,则,又,∴四边形是平行四边形,,又平面,平面,∴平面;(2)设正方体的棱长为2,异面直线与所成角为,则,,,所以异面直线与所成角的余弦值为.【点睛】本题考查线面平行的判定,以及异面直线所成的角,利用向量的夹角公式,可方便求出异面直线所成的角,不用建系,不用作图.20、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论