2022-2023学年天津市红桥区名校数学八年级第一学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年天津市红桥区名校数学八年级第一学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年天津市红桥区名校数学八年级第一学期期末学业质量监测模拟试题含解析_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有()A.1个B.2个C.3个D.4个2.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A.200元 B.250元 C.300元 D.3503.如图,在中,高相交于点,若,则()A. B. C. D.4.方程组的解是()A. B. C. D.5.下列一次函数中,y的值随着x值的增大而减小的是().A.y=x B.y=-x C.y=x+1 D.y=x-16.如图,在Rt△ABC中,∠ACB=90°,BC=5cm,在AC上取一点E使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=12cm,则AE的长为()A.5cm B.6cm C.7cm D.8cm7.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°8.下列计算正确的是()A.= B.=1C.(2﹣)(2+)=1 D.9.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°10.在如图的方格纸中,每个小正方形的边长均为1,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,若△ABC是等腰三角形,则满足条件的格点C的个数是A.6个 B.7个 C.8个 D.9个11.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a-10)在()A.第一象限 B.第二象限C.第三象限 D.第四象限12.下列因式分解正确的是()A.x2+xy+x=x(x+y) B.x2﹣4x+4=(x+2)(x﹣2)C.a2﹣2a+2=(a﹣1)2+1 D.x2﹣6x+5=(x﹣5)(x﹣1)二、填空题(每题4分,共24分)13.因式分解:=.14.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,,,…,都是等腰直角三角形,若OA1=1,则点B2020的坐标是_______.15.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.16.点关于轴对称的点的坐标是__________.17.如图,在中,,,垂直平分,点为直线上的任一点,则周长的最小值是__________18.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为______.三、解答题(共78分)19.(8分)如图已知的三个顶点坐标分别是,,.(1)将向上平移4个单位长度得到,请画出;(2)请画出与关于轴对称的;(3)请写出的坐标,并用恰当的方式表示线段上任意一点的坐标.20.(8分)如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E,以下是小明的证明过程,请在括号里填写理由.证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)∴∠ACD=2∠2,∠ABC=2∠1(_______)∴∠A=2∠2﹣2∠1(_________)=2(∠2﹣∠1)(_________)=2∠E(等量代换)(2)如果∠A=∠ABC,求证:CE∥AB.21.(8分)如图,在平面直角坐标系中,一次函数与轴、轴分别交于点、两点,与正比例函数交于点.(1)求一次函数和正比例函数的表达式;(2)若点为直线上的一个动点(点不与点重合),点在一次函数的图象上,轴,当时,求点的坐标.22.(10分)如图,在中,,以为直角边作等腰,,斜边交于点.(1)如图1,若,,作于,求线段的长;(2)如图2,作,且,连接,且为中点,求证:.23.(10分)如图,正方形的顶点是坐标原点,边和分别在轴、轴上,点的坐标为.直线经过点,与边交于点,过点作直线的垂线,垂足为,交轴于点.(1)如图1,当时,求直线对应的函数表达式;(2)如图2,连接,求证:平分.24.(10分)计算:①②25.(12分)如图,长方形中∥,边,.将此长方形沿折叠,使点与点重合,点落在点处.(1)试判断的形状,并说明理由;(2)求的面积.26.如图,一次函数的图像与轴交于点,与轴交于点,且与正比函数的图像交于点,结合图回答下列问题:(1)求的值和一次函数的表达式.(2)求的面积;(3)当为何值时,?请直接写出答案.

参考答案一、选择题(每题4分,共48分)1、D【解析】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.2、C【解析】试题分析:先求出总支出,再根据用于食物上的支出占总支出的30%即可得出结论.解:∵用于衣服上的支是200元,占总支出的20%,∴总支出==1000(元),∴用于食物上的支出=1000×30%=300(元).故选C.考点:扇形统计图.3、B【分析】利用多边形的内角和公式:,即可求出四边形AFED的内角和是360°,根据已知条件知BD⊥AC,CF⊥AB,得∠AFC=∠ADB=90°,因,即可得出的度数.【详解】解:∵高相交于点∴∠AFC=∠ADB=90°∵∴故选:B.【点睛】本题主要考查的是多边形的内角和公式以及角度的运算,掌握这两个知识点是解题的关键.4、C【分析】直接利用代入法解方程组即可得解【详解】解:,由①得:③,将③代入②得:,解得:,将代入③得:故方程组的解为:,故选择:C.【点睛】本题主要考查二元一次方程组的解及解二元一次方程,解二元一次方程有两种方法:代入法和加减法,根据方程组的特点灵活选择.5、B【分析】根据一次函数的性质依次分析各项即可.【详解】解:A、C、D中,y的值随着x值的增大而增大,不符合题意;B、,y的值随着x值的增大而减小,本选项符合题意.故选B.【点睛】本题考查的是一次函数的性质,解答本题的关键是熟练掌握一次函数的性质:当时,y的值随着x值的增大而增大;当时,y的值随着x值的增大而减小.6、C【分析】根据已知条件证明Rt△ABC≌Rt△FCE,即可求出答案.【详解】∵EF⊥AC,∴∠CEF=90°,在Rt△ABC和Rt△FCE中,∴Rt△ABC≌Rt△FCE(HL),∴AC=FE=12cm,∵EC=BC=5cm,∴AE=AC-EC=12-5=7cm,故选:C.【点睛】本题考查了全等三角形的判定和性质,掌握知识点是解题关键.7、D【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8、D【分析】根据二次根式的加减法对A、B进行判断.根据平方差公式对B进行判断;利用分母有理化对D进行判断.【详解】解:、原式,所以选项错误;、原式,所以选项错误;、原式,所以选项错误;、原式,所以选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.10、C【解析】根据等腰三角形的性质,逐个寻找即可.【详解】解:根据等腰三角形的性质,寻找到8个,如图所示,故答案为C.【点睛】此题主要考查等腰三角形的性质,注意不要遗漏.11、D【解析】∵(5,a)、(b,7),

∴a<7,b<5,

∴6-b>0,a-10<0,

∴点(6-b,a-10)在第四象限.

故选D.12、D【分析】各项分解得到结果,即可作出判断.【详解】A、原式=x(x+y+1),不符合题意;B、原式=(x﹣2)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣5)(x﹣1),符合题意,故选:D.【点睛】本题考查了因式分解的应用,掌握因式分解的概念以及应用是解题的关键.二、填空题(每题4分,共24分)13、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a后继续应用平方差公式分解即可:.14、【分析】根据等腰直角三角形的性质和一次函数上点的特征,依次写出,,,....找出一般性规律即可得出答案.【详解】解:当x=0时,,即,∵是等腰直角三角形,∴,将x=1代入得,∴,同理可得……∴.故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.15、87.5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=(分).故答案为:87.5分.【点睛】本题考查了加权平均数的求法.熟记公式:是解决本题的关键.16、(2,-1)【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;17、1【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.【详解】∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=1.故答案为:1.【点睛】本题考查了垂直平分线的性质,轴对称−最短路线问题的应用,解此题的关键是找出P的位置.18、5【分析】找到点E关于AD的对称点E’,根据对称得BF+EF=BE’,利用等边三角形三线合一性质证明AD=BE’即可求出结果.【详解】如下图,作点E关于AD的对称点E’,∵△ABC是等边三角形,E为AB的中点,∴E’是线段AC的中点,∴AD垂直平分EE’,EF=E’F即BF+EF=BE’,又∵D是BC中点,∴AD=BE’=5(等边三角形三线相等),【点睛】本题考查了等边三角形三线合一性质,图形对称的实际应用,中等难度,证明BF+EF=AD是解题关键.三、解答题(共78分)19、(1)图见解析;(2)图见解析;(3)的坐标为;线段上任意一点的坐标为,其中.【分析】(1)先利用平移的性质求出的坐标,再顺次连接即可得;(2)先利用轴对称的性质求出的坐标,再顺次连接即可得;(3)由(1)中即可知的坐标,再根据线段所在直线的函数表达式即可得.【详解】(1)向上平移4个单位长度的对应点坐标分别为,即,顺次连接可得到,画图结果如图所示;(2)关于y轴对称的对应点坐标分别为,顺次连接可得到,画图结果如图所示;(3)由(1)可知,的坐标为线段所在直线的函数表达式为则线段上任意一点的坐标为,其中.【点睛】本题考查了画平移图形、画轴对称图形、点坐标的性质等知识点,依据题意求出各点经过平移、轴对称后的对应点的坐标是解题关键.20、(1)见解析;(2)证明见解析.【解析】(1)根据角平分线的性质以及三角形外角的性质即可求证;(2)由(1)可知:∠A=2∠E,由于∠A=∠ABC,∠ABC=2∠ABE,所以∠E=∠ABE,从而可证AB∥CE.【详解】解:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质),∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质),∴∠A=2∠2﹣2∠1(等量代换),=2(∠2﹣∠1)(提取公因数),=2∠E(等量代换);(2)由(1)可知:∠A=2∠E∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE,∴AB∥CE.【点睛】本题考查三角形的综合问题,涉及平行线的判定,三角形外角的性质,角平分线的性质,需要学生灵活运用所学知识.21、(1)一次函数解析式为,正比例函数的解析式为:;(2)点P的坐标为:或【分析】(1)点D(2,2)代入和中,求出解析式即可;(2)通过一次函数解析式求出点A的坐标,设P点坐标为(m,m),则Q点坐标为(m,-2m+6),再根据,解出m的值,即可求出点P的坐标.【详解】(1)把点D(2,2)代入中得:,解得:,∴一次函数解析式为,把点D(2,2)代入中得:,解得:,∴正比例函数的解析式为:;(2)把y=0代入得:,∴A点坐标为(3,0),OA=3,设P点坐标为(m,m),则Q点坐标为(m,-2m+6),,∵,∴,解得:或,∴点P的坐标为:或.【点睛】本题是对一次函数的综合考查,熟练掌握待定系数法求一次函数解析式及一次函数知识是解决本题的关键.22、(1);(2)见解析【分析】(1)由直角三角形的性质可求,由等腰直角三角形的性质可得,即可求BC的长;(2)过点A作AM⊥BC,通过证明△CNM∽△CBD,可得,可得CD=2CN,AN=BD,由“SAS”可证△ACN≌△CFB,可得结论.【详解】(1),,,,,.,,,且,,,;(2)如图,过点作,,,,,,,,,,,,,且,,且,,.,.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,添加恰当辅助线构造全等三角形是本题的关键.23、(1);(2)证明见解析.【解析】(1)先证明,求出M的坐标,再代入C点坐标即可求解直线解析式;(2)过点作于,于,证明,得到即可求解.【详解】(1)由已知:∴又,∴∴,即设直线的函数表达式为将和代入得,解得,,即直线的函数表达式为(2)过点作于,于,则,又,∴,∴∴点落在的平分线上,即平分【点睛】此题主要考查坐标与图形,解题的关键是熟知正方形的性质、全等三角形的判定与性质、待定系数法求出函数解析式及角平分线的判定定理.24、①;②【分析】①根据二次根式的混合运算法则计算;②利用加减消元法求解.【详解】解:①===;②整理得:,①×2+②得:11x=22,解得:x=2,代入①中,解得:y=3,∴方程组的解为:.【点睛】本题考查了二次根式的混合运算以及二元一次方程组,解题的关键是掌握运算法则和加减消元法.25、(1)是等腰三角形;(2)1【解析】试题分析:(1)根据翻折不变性和平行线的性质得到两个相等的角,根据等角对等边即可判断△BEF是等腰三角形;(2)根据翻折的性质可得BE=DE,BG=CD,∠EBG=∠ADC=90°,设BE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论