


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若,则的值为()A.1 B. C. D.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A.5 B.6 C.12 D.163.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,这两个对应三角形(如图)的对应点所具有的性质是().A.对应点所连线段都相等 B.对应点所连线段被对称轴平分C.对应点连线与对称轴垂直 D.对应点连线互相平行5.下列哪个点在函数的图象上()A. B. C. D.6.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144° B.84° C.74° D.54°7.下列图形中,对称轴最多的图形是()A. B. C. D.8.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1 B.1﹣2x+x2 C.﹣a2+b2﹣2ab D.4x2+4x﹣19.下列代数式中,是分式的为()A. B. C. D.10.方差:一组数据:2,,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是()A.10 B. C.2 D.11.一个等腰三角形的两边长分别为3、7,则它的周长为()A.17 B.13或17 C.13 D.1012.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.如图1,将边长为a的大正方形剪去一个边长为b的小正方形(ab),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为_________________.14.已知:点A(a-3,2b-1)在y轴上,点B(3a+2,b+5)在x轴上,则点C(a,b)向左平移3个单位,再向上平移2个单位后的坐标为________.15.如图,线段,的垂直平分线交于点,且,,则的度数为________.16.如图,D为△ABC外一点,BD⊥AD,BD平分△ABC的一个外角,∠C=∠CAD,若AB=5,BC=3,则BD的长为_______.17.已知(a−1,5)和(2,b−1)关于x轴对称,则的值为_________.18.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.三、解答题(共78分)19.(8分)张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,乙采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.20.(8分)(1)计算:(2)求x的值:21.(8分)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.22.(10分)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.23.(10分)已知直线与直线.(1)求两直线交点的坐标;(2)求的面积.(3)在直线上能否找到点,使得,若能,请求出点的坐标,若不能请说明理由.24.(10分)因式分解:(1);(2).25.(12分)如图,在中,,,是的垂直平分线.(1)求证:是等腰三角形.(2)若的周长是,,求的周长.(用含,的代数式表示)26.如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数
参考答案一、选择题(每题4分,共48分)1、D【解析】∵,∴==,故选D2、C【分析】设此三角形第三边长为x,根据三角形的三边关系求出x的取值范围,找到符合条件的x值即可.【详解】设此三角形第三边长为x,则10-4﹤x﹤10+4,即6﹤x﹤14,四个选项中只有12符合条件,故选:C.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键.3、D【解析】试题分析:在△ABC中,∠A=36°,AB=AC,求得∠ABC=∠C=72°,且△ABC是等腰三角形;因为CD是△ABC的角平分线,所以∠ACD=∠DCB=36°,所以△ACD是等腰三角形;在△BDC中,由三角形的内角和求出∠BDC=72°,所以△BDC是等腰三角形;所以BD=BC=BE,所以△BDE是等腰三角形;所以∠BDE=72°,∠ADE=36°,所以△ADE是等腰三角形.共5个.故选D考点:角平分线,三角形的内角和、外角和,平角4、B【分析】直接利用轴对称图形的性质得出对应点之间的关系.【详解】轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴,由题意知,两图形关于直线对称,则这两图形的对应点连线被对称轴直线垂直平分,当图形平移后,两图形的对应点连线只被对称轴直线平分.故选B.【点睛】本题主要考查轴对称图形的性质,熟悉掌握性质是关键.5、C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数的图象上,(2,0)也不在函数的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数的图象上,(−2,0)在函数的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.6、B【解析】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.7、A【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、圆有无数条对称轴;
B、正方形有4条对称轴;
C、该图形有3条对称轴;
D、长方形有2条对称轴;
故选:A.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.8、B【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【详解】A.x2﹣x+1不能用完全平方公式分解,故此选项错误;B.1﹣2x+x2=(1-x)2能用完全平方公式分解,故此选项正确;C.﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D.4x2+4x﹣1不能用完全平方公式分解,故此选项错误.故选:B.【点睛】此题主要考查因式分解,解题的关键是熟知完全平方公式的运用.9、B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】这个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点睛】本题考查了分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.10、B【分析】先根据中位数是3,得到数据从小到大排列时与3相邻,再根据中位数的定义列方程求解即得的值,最后应用方差计算公式即得.【详解】∵这组数据的中位数是3∴这组数据按照从小到大的排列顺序应是1,2,,3,4,5或1,2,3,,4,5∴解得:∴这组数据是1,2,3,3,4,5∴这组数据的平均数为∵∴故选:B.【点睛】本题考查了中位数的定义和方差的计算公式,根据中位数定义应用方程思想确定的值是解题关键,理解“方差反映一组数据与平均值的离散程度”有助于熟练掌握方差计算公式.11、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.12、A【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,
∴k<0,
∵一次函数y=x+k的一次项系数大于0,常数项小于0,
∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题(每题4分,共24分)13、【解析】图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2−b2;图(2)中阴影部分为梯形,其上底为2b,下底为2a,高为(a-b)则其面积为(a+b)(a−b),∵前后两个图形中阴影部分的面积,∴.故答案为.14、(0,-3).【分析】根据横轴上的点,纵坐标为零,纵轴上的点,横坐标为零可得a、b的值,然后再根据点的平移方法可得C平移后的坐标.【详解】∵A(a-3,2b-1)在y轴上,∴a-3=0,解得:a=3,∵B(3a+2,b+5)在x轴上,∴b+5=0,解得:b=-5,∴C点坐标为(3,-5),∵C向左平移3个单位长度再向上平移2个单位长度,∴所的对应点坐标为(3-3,-5+2),即(0,-3),故答案为:(0,-3).【点睛】此题主要考查了坐标与图形的变化--平移,以及坐标轴上点的坐标特点,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.15、【分析】连接CE,由线段,的垂直平分线交于点,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段,的垂直平分线交于点,∴CA=CB,CE=CD,∵=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:.
【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.16、3【分析】延长AD与BC交于点E,求出AB和AD的长,再利用勾股定理求出BD的长【详解】如图,设CB与AD延长线交于E点∵BD平分∠ABE,在直角△ABD中,由勾股定理得到【点睛】本题考查了辅助线以及勾股定理的运用,利用辅助线求出直角三角形直角边和斜边长,再利用勾股定理求出直角边长是关键17、-1【分析】根据两点关于x轴对称的坐标的关系,得a﹣1=2,b﹣1=﹣5,求出a,b的值,进而即可求解.【详解】∵和关于x轴对称,∴解得:,∴.故答案为:﹣1.【点睛】本题主要考查平面直角坐标系中,两点关于x轴对称坐标的关系,掌握两点关于x轴对称,横坐标相等,纵坐标互为相反数,是解题的关键.18、(1,0)【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE=D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:,解得,,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.三、解答题(共78分)19、(1)甲采摘园的门票是60元,乙采摘园优惠前的草莓单价是每千克30元;(2)y乙=12x+180;(3)采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同【分析】(1)根据图像,可得出甲采摘园的门票价格,根据点A的坐标,可得出乙采摘园在优惠前草莓的单价;(2)将A、B两点代入解析式,用待定系数法可求得;(3)先求出y甲的解析式,然后分2段,分别令=即可.【详解】解:(1)由图象可得,甲采摘园的门票是60元点A(10,300)故乙采摘园优惠前的草莓单价为:=30元(2)当x>10时,设y乙与x的函数表达式是=kx+b,,得,即当x>10时,与x的函数表达式是=12x+180;(3)由题意可得,=60+300.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.【点睛】本题考查一次函数的应用,需要注意乙采摘园的费用是一个分段函数,故在讨论时,需要分段分别讨论.20、(1);(2)【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【详解】解:(1)原式=;(2)【点睛】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键21、利用等腰三角形的性质得到∠B=∠C,然后证明△ABD≌△ACE即可证得结论.【解析】分析:证明:∵AB=AC,∴∠B=∠C.在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS).∴AD=AE.22、(1)x>3(2)y=-x+5(3)9.5【分析】(1)根据C点坐标结合图象可直接得到答案;(2)利用待定系数法把点A(5,0),C(3,2)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(3)由直线解析式求得点A、点B和点D的坐标,进而根据S四边形BODC=S△AOB-S△ACD进行求解即可得.【详解】(1)根据图象可得不等式2x-4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=-x+5;(3)把x=0代入y=-x+5得:y=5,所以点B(0,5),把y=0代入y=-x+5得:x=2,所以点A(5,0),把y=0代入y=2x-4得:x=2,所以点D(2,0),所以DA=3,所以S四边形BODC=S△AOB-S△ACD==9.5.【点睛】本题考查了待定系数法求一次函数解析式,直线与坐标轴的交点,一次函数与一元一次不等式的关系,不规则图形的面积等,熟练掌握待定系数法、注意数形结合思想的运用是解题的关键.23、(1);(2)2;(3)点有两个,坐标为或.【分析】(1)将直线y=2x+3与直线y=-2x-1组成方程组,求出方程组的解即为C点坐标;(2)求出A、B的坐标,得到AB的长,再利用C点横坐标即可求出△ABC的面积;(3)设P点坐标为,则由点在线段的延长线上和点在线段的延长线上两种情况分别求解.【详解】(1)联立方程组,得:得:;则点;(2)∵直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省德州市跃华中学2024-2025学年高三年级5月联考试题含解析
- 西藏拉萨市那曲二中2024-2025学年高三下5月第一次阶段达标检测试题英语试题含解析
- 江苏省南京市鼓楼区凤凰花园城小学2025年三年级数学第二学期期末教学质量检测试题含解析
- 延边市重点中学2025年初三下学期摸底数学试题含解析
- 江西省南昌市心远中学2025年初三3月统一练习(一)英语试题含答案
- 重庆二手房交易合同示范文本
- 山东省潍坊市临朐县2025届初三下学期模拟卷(四)物理试题含解析
- 山东省烟台市第二中学2024-2025学年高三下学期周考英语试题(重点)试题含解析
- 河南省信阳市2024-2025学年高二下学期期中考试历史试题(含答案)
- 第一单元第二课《美术家族成员多》教学设计-鲁教版五四制六年级美术上册
- 电力现货市场基本原理课件
- 赏识教育培训课程课件
- 上海初三生命科学知识点总复习
- 八年级期末质量分析-课件
- 酒店公共场所卫生管理制度(精选5篇)
- 集成电路芯片封装技术第2章ppt课件
- 技能操作鉴定要素细目表(电工技师)
- 武广客运专线隧道防排水技术的突破QC成果
- 电子产品设计生产工艺流程
- 初级培训机器人的机械系统
- 制造工厂品质宣传海报标语
评论
0/150
提交评论