版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江西省赣州市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.若a>b.则下列各式正确的是A.-a>-b
B.C.D.
2.若是两条不重合的直线表示平面,给出下列正确的个数()(1)(2)(3)(4)A.lB.2C.3D.4
3.已知a∈(π,3/2π),cosα=-4/5,则tan(π/4-α)等于()A.7B.1/7C.-1/7D.-7
4.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
5.拋掷两枚骰子,两次点数之和等于5的概率是()A.
B.
C.
D.
6.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
7.A.10B.-10C.1D.-1
8.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π
9.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2
10.函数y=f(x)存在反函数,若f(2)=-3,则函数y=f-1(x)的图像经过点()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)
二、填空题(10题)11.
12.
13.已知_____.
14.
15.在锐角三角形ABC中,BC=1,B=2A,则=_____.
16.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.
17.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.
18.函数的最小正周期T=_____.
19.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.
20.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.
三、计算题(5题)21.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
22.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
24.解不等式4<|1-3x|<7
25.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
四、证明题(5题)26.己知sin(θ+α)=sin(θ+β),求证:
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
29.
30.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
五、简答题(5题)31.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值
32.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
33.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
34.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
35.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
39.
40.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.C
2.B若两条不重合的直线表示平面,由直线和平面之间的关系可知(1)、(4)正确。
3.B三角函数的计算及恒等变换∵α∈(π,3π/2),cosα=-4/5,∴sinα=-3/5,故tanα=sinα/cosα=3/4,因此tanα(π/4-α)=1-tanα/(1+tanα)=1/7
4.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
5.A
6.D
7.C
8.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.
9.D
10.A由反函数定义可知,其图像过点(-3,2).
11.(-7,±2)
12.2
13.
14.a<c<b
15.2
16.18,
17.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
18.
,由题可知,所以周期T=
19.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2
20.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。
21.
22.
23.
24.
25.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
26.
27.
28.
∴PD//平面ACE.
29.
30.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
31.
32.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
33.
34.
35.
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.
38.
39.
40.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年樟树市第二人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 医院临床科室管理
- 2024年毕节市精神病院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024幼儿园幼儿综合素质评价与激励合同3篇
- 中国医科大基础医学免疫学课件应答的调免疫节
- 第二章 问题研究 从市中心到郊区你选择住在哪里-说课稿 2023-2024学年高一下学期地理人教版(2019)必修第二册001
- 2024清洁服务承包合同范本
- 2025年粤教沪科版九年级历史上册阶段测试试卷
- 培训的收获总结
- 2025年鲁教新版九年级历史上册月考试卷含答案
- 血液系统疾病概述(血液科)
- 《护理交接班制度》课件
- 重庆九龙坡区2022-2023学年高一物理第一学期期末质量跟踪监视试题含解析
- 食材配送投标服务方案
- 建筑施工现场农民工维权告示牌
- 医疗医学医生护士工作PPT模板
- 口腔门诊规章制度.-口腔诊所12个规章制度
- 幼儿园班级安全教育活动计划表
- ppt模板:创意中国风古风水墨山水通用模板课件
- 纺纱学-ppt课件
- (高清版)严寒和寒冷地区居住建筑节能设计标准JGJ26-2018
评论
0/150
提交评论