版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省马鞍山市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.在等差数列{an}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.48
2.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
3.设f(g(π))的值为()A.1B.0C.-1D.π
4.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12
5.设i是虚数单位,若z/i=(i-3)/(1+i)则复数z的虚部为()A.-2B.2C.-1D.1
6.A.10B.5C.2D.12
7.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a
8.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4
9.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)
10.下列句子不是命题的是A.5+1-3=4
B.正数都大于0
C.x>5
D.
二、填空题(10题)11.等差数列的前n项和_____.
12.
13.
14.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.
15.
16.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f⑴=______.
17.
18.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。
19.若△ABC中,∠C=90°,,则=
。
20.在△ABC中,若acosA=bcosB,则△ABC是
三角形。
三、计算题(5题)21.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
23.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
四、证明题(5题)26.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.己知sin(θ+α)=sin(θ+β),求证:
29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
30.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
五、简答题(5题)31.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
32.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn
33.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
34.已知a是第二象限内的角,简化
35.求经过点P(2,-3)且横纵截距相等的直线方程
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.
39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
40.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.C等差数列前n项和公式.设
2.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
3.B值的计算.g(π)=0,f(g(π))=f(0)=0
4.C
5.C复数的运算及定义.
6.A
7.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a
8.B解:设等比数列{an}的公比为q,∵a1+a3=20,a2+a4=40,∴q(a1+a3)=20q=40,
解得q=2.
9.A函数的定义.由3x-1>0,得3x>1,即3x>30,∴x>0.
10.C
11.2n,
12.{x|1<=x<=2}
13.0
14.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.
15.
16.-3.函数的奇偶性的应用.∵f(x)是定义在只上的奇函数,且x≤0时,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.
17.-2i
18.2/π。
19.0-16
20.等腰或者直角三角形,
21.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
22.
23.
24.
25.
26.
∴PD//平面ACE.
27.
28.
29.
30.
31.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
32.
33.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
34.
35.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 9、2025年度绿色建筑模板单项劳务分包合同3篇
- 个人宅基及房屋销售协议版B版
- 2025版门面租赁合同签订流程及注意事项4篇
- 游戏化教学增强小学生注意力的教育模式
- 2025版化妆品销售代理合同范本6篇
- 美容院与互联网平台2025年度线上推广服务合同4篇
- 智能化学习环境下的学生思维升级
- 二零二五年度汽车美容服务合同范本4篇
- 科技产品的动态视觉设计实践分享
- 时间管理对学习态度的积极影响
- 教师招聘(教育理论基础)考试题库(含答案)
- 2024年秋季学期学校办公室工作总结
- 铺大棚膜合同模板
- 长亭送别完整版本
- 智能养老院视频监控技术方案
- 你比我猜题库课件
- 无人驾驶航空器安全操作理论复习测试附答案
- 建筑工地春节留守人员安全技术交底
- 默纳克-NICE1000技术交流-V1.0
- 蝴蝶兰的简介
- 老年人心理健康量表(含评分)
评论
0/150
提交评论