贵州省普通高2023学年高三第二次模拟考试数学试卷含解析_第1页
贵州省普通高2023学年高三第二次模拟考试数学试卷含解析_第2页
贵州省普通高2023学年高三第二次模拟考试数学试卷含解析_第3页
贵州省普通高2023学年高三第二次模拟考试数学试卷含解析_第4页
贵州省普通高2023学年高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数的周期为4,当时,则( )ABCD2已知非零向量满足,且与的夹角为,则( )A6BCD33已知数列为等差

2、数列,且,则的值为( )ABCD4执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( )ABCD5已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称6已知集合,集合,则等于( )ABCD7 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)8函数的最大值为,最小正周期为,则有序数对为( )ABCD9已知,函数在区间上恰有个极值点,则正实数的取值范围为( )ABCD10已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦

3、点F,则双曲线离心率为ABC2D11双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为( )ABCD12已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD1二、填空题:本题共4小题,每小题5分,共20分。13高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 14实数,满足,如果目标函数的最小值为,则的最小值为_15某大学、四个不同的专业人数占本校总人数的比例依次为、,现欲采用分层抽样的方法从这四个专

4、业的总人数中抽取人调查毕业后的就业情况,则专业应抽取_人16如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围18(12分)已知三棱锥中,为等腰直角三角形,设点为中点,点为中点,点为上一点,且(1)证明:平面;(2)若,求直线与平面所成角的正弦值19(12分)已知等差数列中,数列的前项和.(1)求;(2)若,求的前项和.20(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原

5、点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.21(12分)已知,且满足,证明:.22(10分)ABC的内角的对边分别为,已知ABC的面积为(1)求;(2)若求ABC的周长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数

6、的运算性质,属于中档题.2D【解析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可【详解】解:非零向量,满足,可知两个向量垂直,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则故选:【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题3B【解析】由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得【详解】解:由等差数列的性质可得,解得,故选:B【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题4B【解析】根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解

7、】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.5C【解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.6B【解析】求

8、出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.7C【解析】利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.8B【解析】函数(为辅助角)函数的最大值为,最小正周期为故选B9B【解析】先利用向量数量积和三角恒等变换求出 ,函数在区间上恰有个极值点即为三个

9、最值点,解出,再建立不等式求出的范围,进而求得的范围.【详解】解: 令,解得对称轴,又函数在区间恰有个极值点,只需 解得故选:【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或 的形式; (2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.10B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.

10、故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.11B【解析】首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.12B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解

11、】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.二、填空题:本题共4小题,每小题5分,共20分。1320【解析】根据系统抽样的定义将56人按顺

12、序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.14【解析】作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为等价于点与原点连线的斜率,所以当点为

13、点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.15【解析】求出专业人数在、四个专业总人数的比例后可得【详解】由题意、四个不同的专业人数的比例为,故专业应抽取的人数为故答案为:1【点睛】本题考查分层抽样,根据分层抽样的定义,在各层抽取样本数量是按比例抽取的16【解析】取中点,连结,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围【详解】取中点,连结,在棱长为2的正方体中,点、分别是棱、的中点,平面平面,是侧面正方形内一点(

14、含边界),平面,点在线段上运动,在等腰中,作于,由等面积法解得:,线段长度的取值范围是,故答案为:,【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为 若对任意、都有,即为, 由,当取得等号,则,由,可得,则的取值范围是【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题.

15、(1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.18 (1)证明见解析;(2) 【解析】(1)连接交于点,连接,通过证,并说明平面,来证明平面(2)采用建系法以、所在直线分别为、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可【详解】证明:如图,连接交于点,连接,点为的中点,点为的中点,点为的重心,则,又平面,平面,平面;,可得,又,则以、所在直线分别为、轴建立空间直角坐标系,则, ,

16、设平面的一个法向量为,由,取,得设直线与平面所成角为,则直线与平面所成角的正弦值为【点睛】本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式使用广泛,需要识记19(1),;(2).【解析】(1)由条件得出方程组 ,可求得的通项,当时,可得,当时,得出是以1为首项,2为公比的等比数列,可求得的通项;(2)由(1)可知,分n为偶数和n为奇数分别求得.【详解】(1)由条件知, ,当时,即,当时,是以1为首项,2为公比的等比数列, ;(2)由(1)可知,当n为偶数时, 当n为奇数时, 综上,【点睛】本题考查等差数列和等比数列的通项的求得,以及其前

17、n项和,注意分n为偶数和n为奇数两种情况分别求得其数列的和,属于中档题.20(1),.(2)【解析】(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式: ,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.21证明见解析【解析】将化简可得,由柯西不等式可得证明.【详解】解:因为,所以,又, 所以,当且仅当时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.22 (1)(2) .【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论