福建省长乐2023年高三3月份第一次模拟考试数学试卷含解析_第1页
福建省长乐2023年高三3月份第一次模拟考试数学试卷含解析_第2页
福建省长乐2023年高三3月份第一次模拟考试数学试卷含解析_第3页
福建省长乐2023年高三3月份第一次模拟考试数学试卷含解析_第4页
福建省长乐2023年高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合( )ABCD2已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD3设数列的各项均为正数,前项和为,且,则( )A128B65C64D

2、634已知三点A(1,0),B(0, ),C(2,),则ABC外接圆的圆心到原点的距离为()ABCD5已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD26已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()AB2CD7 若x,y满足约束条件的取值范围是A0,6B0,4C6, D4, 8已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( )ABCD9已知向量,则向量与的夹角为( )ABCD10已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )ABCD

3、11已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )AB16CD12已知,则下列不等式正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知F为抛物线C:x28y的焦点,P为C上一点,M(4,3),则PMF周长的最小值是_.14春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有_种选派方法.15设函数 满足,且当时,又函数,则函数在上的零点个数为_.16某校开展“我身边的榜样”评选活动,现对3名候

4、选人甲、乙、丙进行不记名投票,投票要求详见选票这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之_“我身边的榜样”评选选票候选人符号注:1同意画“”,不同意画“”2每张选票“”的个数不超过2时才为有效票甲乙丙三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()求在点处的切线方程;()求证:在上存在唯一的极大值;()直接写出函数在上的零点个数18(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存

5、在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.19(12分)已知,函数有最小值7.(1)求的值;(2)设,求证:.20(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次

6、数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?21(12分)已知函数 .(1)若在 处导数相等,证明: ;(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.22(10分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因

7、,所以,故,又, ,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.2D【解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.3D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题

8、主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.4B【解析】选B.考点:圆心坐标5A【解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.6A【解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A

9、【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.7D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是4,+)故选D8D【解析】利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点

10、有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.9C【解析】求出,进而可求,即能求出向量夹角.【详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.10D【解析】由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.11C【解析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,所以平面,平面.所以

11、和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.12D【解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【点

12、睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题二、填空题:本题共4小题,每小题5分,共20分。135【解析】PMF的周长最小,即求最小,过做抛物线准线的垂线,垂足为,转化为求最小,数形结合即可求解.【详解】如图,F为抛物线C:x28y的焦点,P为C上一点,M(4,3),抛物线C:x28y的焦点为F(0,2),准线方程为y2.过作准线的垂线,垂足为,则有,当且仅当三点共线时,等号成立,所以PMF的周长最小值为55.故答案为:5.【点睛】本题考查抛物线定义的应用,考查数形结合与

13、数学转化思想方法,属于中档题.1424【解析】先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接法求排列组合问题,正难则反,是基础题.151【解析】判断函数为偶函数,周期为2,判断为偶函数,计算,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,当时,函数先增后减。当时,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共

14、点,则函数在上的零点个数为1故答案为:.【点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.1691【解析】设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率.【详解】不妨设共有选票张,投票的有,票的有,票的有,则由题意可得:,化简得:,即,投票有效率越高,越小,则,故本次投票的有效率(有效票数与总票数的比值)最高可能为故答案为:.【点睛】本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变量所满足的关系式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17();()证明

15、见解析;()函数在有3个零点【解析】()求出导数,写出切线方程;()二次求导,判断单调递减,结合零点存在性定理,判断即可;(),数形结合得出结论【详解】解:(),故在点,处的切线方程为,即;()证明:,故在递减,又,由零点存在性定理,存在唯一一个零点,当时,递增;当时,递减,故在只有唯一的一个极大值;()函数在有3个零点【点睛】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题18(1);(2)存在,【解析】(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)

16、设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点【详解】(1)由题可得,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,若以为直径的圆经过点,则,化简得,解得或因为与不重合,所以舍.所以直线的方程为.【点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.19(1).(2)见解析【解析】(1)由绝对值三解不等式可得,所以当时,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1),当时,解得.(2),当且仅当,即,时,等号成立.【

17、点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题20每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,

18、考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.21(I)见解析(II)【解析】(1)由题x0,由f(x)在x=x1,x2(x1x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,利用导数性质能证明(2)由得,令,利用反证法可证明证明恒成立由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围.【详解】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,下面先证明恒成立若存在,使得,且当自变量充分大时,所以存在,使得,取,则与至少有两个交点,矛盾由对任意,只有一个解,得为上的递增函数,得,令,则,得【点睛】本题考查函数的单调性,导数的运算及其应用,同时考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论