2021-2022学年辽宁省沈阳市第八十二中学中考数学对点突破模拟试卷含解析_第1页
2021-2022学年辽宁省沈阳市第八十二中学中考数学对点突破模拟试卷含解析_第2页
2021-2022学年辽宁省沈阳市第八十二中学中考数学对点突破模拟试卷含解析_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )ABCD2如图,把

2、ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MNAB,则点O是ABC的( )A外心B内心C三条中线的交点D三条高的交点3如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,BEF的面积为4,则平行四边形ABCD的面积为()A30B27C14D324下列各式计算正确的是()Aa4a3=a12B3a4a=12aC(a3)4=a12Da12a3=a455的倒数是AB5CD56我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳

3、子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )ABCD7利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD8下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()ABCD9世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.5610110全球芯片制造已经进入10纳米到7纳米器件的量产时代中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳

4、米就是0.000000007米数据0.000000007用科学记数法表示为()A0.7108B7108C7109D71010二、填空题(共7小题,每小题3分,满分21分)11三人中有两人性别相同的概率是_.12如果一个正多边形每一个内角都等于144,那么这个正多边形的边数是_13如图放置的正方形,正方形,正方形,都是边长为的正方形,点在轴上,点,都在直线上,则的坐标是_,的坐标是_.14如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120,这个扇形的面积为 15如图,反比例函数y(x0)的图象经过点A(2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一

5、点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B在此反比例函数的图象上,则t的值是()A1+B4+C4D-1+16如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .17如图,数轴上点A所表示的实数是_三、解答题(共7小题,满分69分)18(10分)解方程:x24x5019(5分)计算:(1)20182+|1|+3tan3020(8分)已知,如图,在四边形ABCD中,ADB=ACB,延长AD、BC相交于点E求证:ACEBDE;BEDC

6、=ABDE21(10分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)22(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_

7、件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?23(12分)关于x的一元二次方程x2(m1)x(2m3)1(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根24(14分)已知OA,OB是O的半径,且OAOB,垂足为O,P是射线OA上的一点(点A除外),直线BP交O于点Q,过Q作O的切线交射线OA于点E(1)如图,点P在线段OA上,若OBQ=15,求AQE的大小;(2)如图,点P在OA的延长线上,若OBQ=65,求AQE的大小参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1

8、、C【解析】由实际问题抽象出方程(行程问题)【分析】甲车的速度为千米/小时,则乙甲车的速度为千米/小时甲车行驶30千米的时间为,乙车行驶40千米的时间为,根据甲车行驶30千米与乙车行驶40千米所用时间相同得故选C2、B【解析】利用平行线间的距离相等,可知点到、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知: , ,图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.3、A【解析】四边形ABCD是平行四边形,AB/CD

9、,AB=CD,AD/BC,BEFCDF,BEFAED, ,BE:AB=2:3,AE=AB+BE,BE:CD=2:3,BE:AE=2:5, ,SBEF=4,SCDF=9,SAED=25,S四边形ABFD=SAED-SBEF=25-4=21,S平行四边形ABCD=SCDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.4、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D【详解】Aa4a3=a7,故A错误;B3a4a=12a2,故B错误;C(a3

10、)4=a12,故C正确;Da12a3=a9,故D错误故选C【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键5、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C6、A【解析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此列方程组即可求解【详解】设绳子长x尺,木条长y尺,依题意有故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组7、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形

11、能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.8、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可详解:A是轴对称图形,不是中心对称图形; B是轴对称图形,也是中心对称图形; C

12、是轴对称图形,不是中心对称图形; D是轴对称图形,不是中心对称图形 故选B点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合9、B【解析】0.056用科学记数法表示为:0.056=,故选B.10、C【解析】本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a(1|a|10且n为整数),因此0.000000007用科学记数法法可表示为7,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.二、填空题(共7小题,

13、每小题3分,满分21分)11、1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,三人中至少有两个人的性别是相同的,P(三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.12、1【解析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可【详解】解:设正多边形的边数为n,由题意得,=144,解得n=1故答案为1【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解

14、题的关键13、 【解析】先求出OA的长度,然后利用含30的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可【详解】分别过点 作y轴的垂线交y轴于点,点B在上设 同理, 都是含30的直角三角形, 同理,点 的横坐标为 纵坐标为 故点的坐标为故答案为:;【点睛】本题主要考查含30的直角三角形的性质,找到点的坐标规律是解题的关键14、300【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可底面圆的面积为100, 底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r, 则=20, 解得:母线长为30,扇

15、形的面积为rl=1030=300考点:(1)、圆锥的计算;(2)、扇形面积的计算15、A【解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断OAB为等腰直角三角形,所以AOB=45,再利用PQOA可得到OPQ=45,然后轴对称的性质得PB=PB,BBPQ,所以BPQ=BPQ=45,于是得到BPy轴,则点B的坐标可表示为(-,t),于是利用PB=PB得t-2=|-|=,然后解方程可得到满足条件的t的值【详解】如图,点A坐标为(-2,2),k=-22=-4,反比例函数解析式为y=-,OB=AB=2,OAB为等腰直角三角

16、形,AOB=45,PQOA,OPQ=45,点B和点B关于直线l对称,PB=PB,BBPQ,BPQ=OPQ=45,BPB=90,BPy轴,点B的坐标为(- ,t),PB=PB,t-2=|-|=,整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),t的值为故选A【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程16、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE

17、=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论17、【解析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示

18、的数.三、解答题(共7小题,满分69分)18、x1 =-1, x2 =5【解析】根据十字相乘法因式分解解方程即可19、6+2【解析】分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案详解:原式=16+1+3=5+1+=6+2点睛:此题主要考查了实数运算,正确化简各数是解题关键20、(1)答案见解析;(2)答案见解析【解析】(1)根据邻补角的定义得到BDE=ACE,即可得到结论;(2)根据相似三角形的性质得到 ,由于E=E,得到ECDEAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论本题解析:【详解】证明:(1)ADB=ACB,BDE=ACE,又E=E,A

19、CEBDE;(2)ACEBDE,E=E,ECDEAB,BEDC=ABDE【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.21、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36

20、=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB的高度为6.4米。22、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50 x(3)每件商品降价1元时,商场日盈利可达到2000元【解析】(1)根据“盈利=单件利润销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值【详解】(1)当天盈利:(50-3)(30+23)=1692(元)答:若某天该商品每件降价3元,当天可获利1692元(2)每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元故答案为2x;50-x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论