2022年广西钦州市灵山县数学高二第二学期期末质量跟踪监视试题含解析_第1页
2022年广西钦州市灵山县数学高二第二学期期末质量跟踪监视试题含解析_第2页
2022年广西钦州市灵山县数学高二第二学期期末质量跟踪监视试题含解析_第3页
2022年广西钦州市灵山县数学高二第二学期期末质量跟踪监视试题含解析_第4页
2022年广西钦州市灵山县数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若关于的不等式有解,则实数的取值范围是( )ABCD2已知正方体的棱长为,定点在棱上(不在端点上),点是平面内的

2、动点,且点到直线的距离与点到点的距离的平方差为,则点的轨迹所在的曲线为A圆B椭圆C双曲线D抛物线3已知,则,的大小关系为()ABCD4已知数列为等差数列,且,则的值为AB45CD5已知函数,关于的方程有三个不等的实根,则的取值范围是( )ABCD6过抛物线的焦点的直线交抛物线于两点,其中点,且,则( )ABCD7根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( )ABCD8设实数满足约束条件,则的最大值为( )AB1C6D99已知某几何体的三视图如图所示,则该几何体的体积为ABCD10曾玉、刘云、李梦、张熙四人被北京大学、清华

3、大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( )A北京大学、清华大学、复旦大学、武汉大学B武汉大学、清华大学、复旦大学、北京大学C清华大学、北京大学、武汉大学 、复旦大学D武汉大学、复旦大学、清华大学、北京大学11在的展开式中,的系数是( )ABC5D4012函数的

4、极值情况是( )A有极大值,极小值2B有极大值1,极小值C无极大值,但有极小值D有极大值2,无极小值二、填空题:本题共4小题,每小题5分,共20分。13某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线的离心率的概率是_14有一个倒圆锥形的容器,其底面半径是5厘米,高是10厘米,容器内放着49个半径为1厘米的玻璃球,在向容器倒满水后,再把玻璃球全部拿出来,则此时容器内水面的高度为_厘米15已知等比数列中,则公比_;_16设,若是的必要不充分条件,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面是矩形,平面平面, ,点在棱

5、上, ,点是棱的中点,求证:(1) 平面;(2) 平面.18(12分)有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?(1)3名女生排在一起;(2)3名女生次序一定,但不一定相邻;(3)3名女生不站在排头和排尾,也互不相邻;(4)每两名女生之间至少有两名男生;(5)3名女生中,A,B要相邻,A,C不相邻19(12分)某种产品的以往各年的宣传费用支出(万元)与销售量(万件)之间有如下对应数据2456843678 (1)试求回归直线方程;(2)设该产品的单件售价与单件生产成本的差为(元),若与销售量(万件)的函数关系是,试估计宣传费用支出为多少万元时,销售该产品的利润最大?(注

6、:销售利润=销售额-生产成本-宣传费用)(参考数据与公式:,)20(12分)随着国内电商的不断发展,快递业也进入了高速发展时期,按照国务院的发展战略布局,以及国家邮政管理总局对快递业的宏观调控,SF快递收取快递费的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,在收费10元的基础上,每超过1kg(不足1kg,按1kg计算)需再收5元.某县SF分代办点将最近承揽的100件包裹的重量统计如下:重量(单位:kg)(0,1(1,2(2,3(3,4(4,5件数43301584对近60天,每天揽件数量统计如下表:件数范围0100101200201300301400401500件数50150

7、250350450天数663016以上数据已做近似处理,将频率视为概率.(1)计算该代办点未来5天内不少于2天揽件数在101300之间的概率;(2)估计该代办点对每件包裹收取的快递费的平均值;根据以往的经验,该代办点将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前该代办点前台有工作人员3人,每人每天揽件不超过150件,日工资110元.代办点正在考虑是否将前台工作人员裁减1人,试计算裁员前后代办点每日利润的数学期望,若你是决策者,是否裁减工作人员1人?21(12分)已知在ABC中,|AB|1,|AC|1()若BAC的平分线与边BC交于点D,求;()若点E为BC的中点,

8、当取最小值时,求ABC的面积22(10分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响且无平局.求:(1)前三局比赛甲队领先的概率;(2)设本场比赛的局数为,求的概率分布和数学期望. (用分数表示)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先将不等式转化为,然后构造函数,只要小于的最大值即可【详解】解:由,得,令,则当时,;当时, 所以在上单调递增,在上单调递减所以当时,取最大值,所以故选:A【点睛】此题考查了

9、利用导数研究函数的单调性和最值,属于中档题2、D【解析】作,连接,以为原点建立空间直角坐标系,利用勾股定理和两点间距离公式构造,整理可得结果.【详解】作,垂足分别为以为原点建立如下图所示的空间直角坐标系:设,由正方体特点可知,平面,整理得:的轨迹是抛物线本题正确选项:【点睛】本题考查立体几何中点的轨迹问题,关键是能够通过建立空间直角坐标系,求出动点满足的方程,从而求得轨迹.3、C【解析】根据的单调性判断的大小关系,由判断出三者的大小关系.【详解】由,则.故选C.【点睛】本小题主要考查对数运算,考查对数函数的单调性,考查对数式比较大小,属于基础题.4、B【解析】由已知及等差数列性质有,故选B.5

10、、B【解析】利用导数讨论函数的性质后可得方程至多有两个解因为有三个不同的解,故方程有两个不同的解,且,最后利用函数的图像特征可得实数的取值范围【详解】,当时,在上为增函数;当时,在上为减函数;所以的图像如图所示:又时,又的值域为, 所以当或时,方程有一个解,当时,方程有两个不同的解,所以方程即有两个不同的解,令,故 ,解得,故选B【点睛】复合方程的解的个数问题,其实质就是方程组的解的个数问题,后者可先利用导数等工具刻画的图像特征,结合原来方程解的个数得到的限制条件,再利用常见函数的性质刻画的图像特征从而得到参数的取值范围6、C【解析】由已知可得,再由,即可求出结论.【详解】因为抛物线的准线为,

11、点在抛物线上,所以,.故选:C【点睛】本题考查抛物线的标准方程,应用焦半径公式是解题的关键,属于基础题.7、C【解析】在下雨条件下吹东风的概率=既吹东风又下雨的概率 下雨的概率【详解】在下雨条件下吹东风的概率为 ,选C【点睛】本题考查条件概率的计算,属于简单题8、D【解析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图像求得结果【详解】解:画出实数满足约束条件表示的可行域,由得,则表示直线在轴上的截距,截距越大,越大,作出目标函数对应的直线由图可知将直线向上平移,经过点时,直线的截距最大,由,得点的坐标为所以的最大值为故选:D【点睛】此题考查画不等式组表示的平面区域,考查数形结合求

12、函数的最值.9、A【解析】根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.10、D【解析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【点睛】本题考查了逻辑推理,意在考查学生的推理能力.11、A

13、【解析】由二项展开式的通项公式,可直接得出结果.【详解】因为的展开式的通项为,令,则的系数是.故选A【点睛】本题主要考查二项展开式中指定项的系数,熟记二项式定理即可,属于基础题型.12、A【解析】求导分析函数导数的零点,进而求得原函数的单调性再判断即可.【详解】由题,函数定义域为,令有.故在上单调递增,在上单调递减.在上单调递减,在上单调递增.且当时, ;当时, 故有极大值,极小值2.故选:A【点睛】本题主要考查了函数极值的求解,需要求导分析单调性.同时注意函数在和上分别单调递减.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】基本事件总数,由双曲线的离心率,得,利用

14、列举法求出双曲线的离心率包含的基本事件有6个,由此能求出双曲线的离心率的概率【详解】某同学同时掷两颗骰子,得到点数分别为a,b,基本事件总数,双曲线的离心率,解得,双曲线的离心率包含的基本事件有:,(1,共6个,则双曲线的离心率的概率是故答案为【点睛】本题考查概率的求法,考查古典概型、列举法、双曲线性质等基础知识,考查运算求解能力,是基础题对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.14、6【解析】设水面的高度为,根据圆锥体的体积等于全部玻璃的体积加上水的体积列方程求解即可.【详解】解:设在向容器倒满水后,再把玻璃球全部拿出来,则此时

15、容器内水面的高度为,则,解得.故答案为:6.【点睛】本题考查圆锥体积和球的体积的运算,关键要找到体积之间的关系,是基础题.15、2 4 【解析】根据等比数列通项公式构造方程求解即可.【详解】 本题正确结果:;【点睛】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.16、.【解析】分析:首先求得p和q,然后结合是的必要不充分条件求解实数a的取值范围即可.详解:求解二次不等式可得:,求解二次不等式可得:,是的必要不充分条件,则:,即:,求解不等式组可得:实数的取值范围为.点睛:本题主要考查充分性、必要性条件的应用,集合思想的应用等知识,意在考查学生的转化能力和计算求解能力

16、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】分析:(1),所以点是棱的中点,所以,所以,所以平面. (2)先证明平面所以,又因为,所以平面.详解:证明:(1)因为在中, ,所以点是棱的中点.又点是棱的中点,所以是的中位线,所以.因为底面是矩形,以,所以.又平面, 平面,所以平面.(2)因为平面平面, 平面,平面平面,所以平面.又平面,所以.因为, ,平面,平面,所以平面.点睛:线面垂直的判定和性质定理的应用是高考一直以来的一个热点,把握该知识点的关键在于判定定理和性质定理要熟练掌握理解,见到面面垂直一般都要想到其性质定理,这是解题的关

17、键.18、(1)4320(2)6720(3)2880(4)2880(5)5760【解析】(1)根据题意,用捆绑法分2步分析:,3名女生看成一个整体,将这个整体与5名男生全排列,由分步计数原理计算可得答案;(2)根据题意,先计算8人排成一排的排法,由倍分法分析可得答案;(3)根据题意,分2步分析:,将5名男生全排列,将3名女生安排在5名男生形成的空位中,由分步计数原理计算可得答案;(4)根据题意,分2种情况讨论:,两名女生之间有3名男生,另两名女生之间有2名男生,任意2名女生之间都有2名男生,分别求出每种情况下的排法数目,由加法原理计算可得答案;(5)根据题意,分2种情况讨论:,A、B、C三人相

18、邻,则B在中间,A、C在两边,A、B、C三人不全相邻,分别求出每种情况下的排法数目,由加法原理计算可得答案【详解】(1)根据题意,分2步分析:,3名女生看成一个整体,考虑其顺序有A3,将这个整体与5名男生全排列,有A6则3名女生排在一起的排法有6720=4320种;(2)根据题意,将8人排成一排,有A8由于3名女生次序一定,则有A8(3)根据题意,分2步分析:,将5名男生全排列,有A5,除去两端,有4个空位可选,在其中任选3个,安排3名女生,有A4则3名女生不站在排头和排尾,也互不相邻的排法有12024=2880种;(4)根据题意,将3名女生排成一排,有A33=6,两名女生之间有3名男生,另两

19、名女生之间有2名男生,将5名男生分成3、2的两组,分别安排在3名女生之间,有6C,任意2名女生之间都有2名男生,将5名男生分成2、2、1的三组,2个2人组安排在三名女生之间,1人安排在两端,有6C则每两名女生之间至少有两名男生的排法有1440+1440=2880种;(5)根据题意,分2种情况分析:,A、B、C三人相邻,则B在中间,A、C在两边,三人有A2将3人看成一个整体,与5名男生全排列,有A6则此时有2720=1440种排法;,A、B、C三人不全相邻,先将5名男生全排列,有A5将A、B看成一个整体,和C一起安排在5名男生形成的6个空位中,有720A则3名女生中,A,B要相邻,A,C不相邻的

20、排法有1440+4320=5760种排法【点睛】本题主要考查了排列、组合的应用,涉及分类、分步计数原理,属于中档题19、(1)(2)估计宣传费用为万元时,销售该产品的利润最大【解析】【试题分析】(1)先求出,再设回归直线方程为:,算出 ,代入回归方程求出,进而求出回归直线方程为;(2)先建立利润函数(万元),即,再求导可得,由,且时,时,即当时,最大,这时的估计值为,所以估计宣传费用为万元时,销售该产品的利润最大。解:(1),设回归直线方程为:, ,所以回归直线方程为;(2)销售利润(万元),由,且时,时,所以当时,最大,这时的估计值为,所以估计宣传费用为万元时,销售该产品的利润最大。点睛:解

21、答本题的第一问时,先求出,再设回归直线方程为:,算出 ,然后将其代入回归方程求出,从而求出回归直线方程为;解答本题的第二问时,先建立利润函数(万元),即,再求导可得,由,且时,时,最后确定当时,最大,这时的估计值为,所以估计宣传费用为万元时,销售该产品的利润最大。20、(1)28533125(2)15,代办点不应将前台工作人员裁员1【解析】(1)由题意得到样本中包裹件数在101300之间的概率为35,进而得到包裹件数在101300之间的天数服从二项分布X(2)利用平均数的计算公式,求得样本中每件快递收取的费用的平均值,即可得到结论;根据题意及,分别计算出不裁员和裁员,代办点平均每日利润的期望值

22、,比较即可得到结论.【详解】(1)由题意,可得样本中包裹件数在101300之间的天数为36,频率f=36故可估计概率为35,显然未来5天中,包裹件数在101300之间的天数服从二项分布,即X故所求概率为1-P(2)样本中快递费用及包裹件数如下表:包裹重量(单位:kg)12345快递费(单位:元)1015202530包裹件数43301584故样本中每件快递收取的费用的平均值为1043+1530+2015+258+304100故估计该代办点对每件快递收取的费用的平均值为15元. 代办点不应将前台工作人员裁员1人,理由如下:根据题意及(2),搅件数每增加1,代办点快递收入增加15(元),若不裁员,则每天可揽件的上限为450件,代办点每日揽件数情况如下:包裹件数范围0100101200201300301400401500包裹件数(近似处理)50150250350450实际揽件数50150250350450频率0.10.10.50.20.1EY500.1+1500.1+2500.5+3500.2+4500.1=260故代办点平均每日利润的期望值为2601513若裁员1人,则每天可揽件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论