重庆綦江中学2023学年高考数学二模试卷(含解析)_第1页
重庆綦江中学2023学年高考数学二模试卷(含解析)_第2页
重庆綦江中学2023学年高考数学二模试卷(含解析)_第3页
重庆綦江中学2023学年高考数学二模试卷(含解析)_第4页
重庆綦江中学2023学年高考数学二模试卷(含解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在棱长为2的正方体ABCDA1B1C1D1中,P为A1D1的中点,若三棱锥PABC的四个顶点都在球O的球面上,则球O的

2、表面积为( )A12BCD102费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()ABCD3某几何体的三视图如图所示,则该几何体的体积为()ABCD4已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )ABCD5向量,且,则( )ABCD6如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )ABCD7

3、已知集合,则的真子集个数为( )A1个B2个C3个D4个8函数的图象大致是()ABCD9如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )ABCD10一辆邮车从地往地运送邮件,沿途共有地,依次记为,(为地,为地)从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,各地装卸完毕后剩余的邮件数记为则的表达式为( )ABCD11已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )AB3C2D12设集合,

4、则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于_14已知为矩形的对角线的交点,现从这5个点中任选3个点,则这3个点不共线的概率为_.15已知向量,若,则_.16设,满足约束条件,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏

5、爱,因此他们每人在五所高校中随机选2所(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望18(12分)设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.(1)证明:直线过定点,并求出该定点的坐标;(2)是否存在常数,满足?并说明理由.19(12分)已知函数,其中,为自然对数的底数(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点20(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意

6、识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中21(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y

7、2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值22(10分)在平面直角坐标系xOy中,椭圆C:x2a2(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;若原点O到直线l的距离为1,并且2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】取B1C1的中点Q,连接PQ,

8、BQ,CQ,PD,则三棱柱BCQADP为直三棱柱,此直三棱柱和三棱锥PABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【题目详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4R2=,故选:C.【答案点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.2、B【答案解析】基本事件总数,能表示为两个不同费马素数的和只有,共有个,根据古典概型求出概率【题目详解】在

9、不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【答案点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题3、A【答案解析】利用已知条件画出几何体的直观图,然后求解几何体的体积【题目详解】几何体的三视图的直观图如图所示,则该几何体的体积为:故选:【答案点睛】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键4、B【答案解析】设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【题目详解】设点位于第二象限,由于轴,则点的横坐标

10、为,纵坐标为,即点,由题意可知,直线与直线垂直,因此,双曲线的离心率为.故选:B.【答案点睛】本题考查双曲线离心率的计算,解答的关键就是得出、的等量关系,考查计算能力,属于中等题.5、D【答案解析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【题目详解】故选:D【答案点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.6、D【答案解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【题目详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即

11、为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【答案点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.7、C【答案解析】求出的元素,再确定其真子集个数【题目详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【答案点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集8、C【答案解析】根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【题目详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【答案点睛】本题考查了依据

12、函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.9、B【答案解析】,将,代入化简即可.【题目详解】.故选:B.【答案点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.10、D【答案解析】根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案【题目详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D【答案点睛】本题主要考查数列递推公式的应用,属于中档题11、D【答案解析】本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可【题目详解】结合题意,绘图,结合

13、双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,代入上式子中,得到,结合离心率满足,即可得出,故选D【答案点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难12、C【答案解析】解对数不等式求得集合,由此求得两个集合的交集.【题目详解】由,解得,故.依题意,所以.故选:C【答案点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】方法一:依题意,知直线的方程为,代入圆的方程化简得,解得或,从而得或,则方法二:依题意,知直线的方

14、程为,代入圆的方程化简得,设,则,故.方法三:将圆的方程配方得,其半径,圆心到直线的距离,则.14、【答案解析】基本事件总数,这3个点共线的情况有两种和,由此能求出这3个点不共线的概率【题目详解】解:为矩形的对角线的交点,现从,这5个点中任选3个点,基本事件总数,这3个点共线的情况有两种和,这3个点不共线的概率为故答案为:【答案点睛】本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,属于基础题15、1【答案解析】根据向量加法和减法的坐标运算,先分别求得与,再结合向量的模长公式即可求得的值.【题目详解】向量,则,则因为即,化简可得解得 故答案为: 【答案点睛】本题考查了向

15、量坐标加法和减法的运算,向量模长的求法,属于基础题.16、29【答案解析】由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【答案点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.三、解

16、答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1) (2)(i)(ii)分布列见解析,【答案解析】(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【题目详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率

17、为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为(ii),因此,即的分布列为0123因此数学期望为【答案点睛】本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.18、(1)证明见解析(0,2);(2)存在,理由见解析【答案解析】(1)设直线l的方程为y=kx+b代入抛物线的方程,利用OAOB,求出b,即可知直线过定点(2)由斜率公式分别求出,联立直线与抛物线,椭圆,再由根与系数的关系得,代入,化简即可求解.【题目详解】(1)证明:由题知,直线l的斜率存在且不过原点,故设由可得,.,故所

18、以直线l的方程为故直线l恒过定点.(2)由(1)知设由可得,即存在常数满足题意.【答案点睛】本题主要考查了直线与抛物线、椭圆的位置关系,直线过定点问题,考查学生分析解决问题的能力,属于中档题19、见解析【答案解析】(1)当时,函数,其定义域为,则,设,易知函数在上单调递增,且,所以当时,即;当时,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值(2)由题可得函数的定义域为,设,显然函数在上单调递增,当时,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,因为,所以,又,所以函数在内有一个零点,所以函数有

19、且仅有一个零点综上,函数有且仅有一个零点20、,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【答案解析】根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【题目详解】解: 解得. 所以,该城市驾驶员交通安全意识强的概率 根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计 所以有的把握认为交通安全意识与性别有关. 由题意可知分数在,的分别为名和名, 所以分层抽取的人数分别为名和名, 设的为,的为,则基本事件空间为,共种, 设至少有人得分低于分的事件为,则事件包含的基本事件有,共种所以.【答案点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.21、(),;()【答案解析】()根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.()将射线=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【题目详解】()由所以曲线的极坐标方程为,曲线的普

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论