版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1下列图案中,是中心对称图形的是( )ABC D2如图,网格中的两个三角形是位似图形,它们的位似中心是( )A点AB点BC点CD点D3已知点是线段的黄金分割点,且,则长是( )ABCD4已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;
2、方程的解是,;,其中结论错误的个数是A1B2C3D45下列图形中,主视图为的是()ABCD6抛物线y2x2经过平移得到y2(x+1)23,平移方法是()A向左平移1个单位,再向下平移3个单位B向左平移1个单位,再向上平移3个单位C向右平移1个单位,再向下平移3个单位D向右平移1个单位,再向上平移3个单位7如图,在RtABC中,ACB=90,AC=BC=1,将绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )ABC-D8在相同时刻,物高与影长成正比如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( )A20米B30米C16米D15米9
3、不等式的解集在数轴上表示正确的是()ABCD10如图1,一个扇形纸片的圆心角为90,半径为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A1B19C12D11已知m是方程的一个根,则代数式的值等于( )A2005B2006C2007D200812在RtABC中,C=90若AC=2BC,则sinA的值是( )A BCD2二、填空题(每题4分,共24分)13如图,正五边形内接于,为上一点,连接,则的度数为_. 14如图,四边形内接于,若,_.15若一元二次方程ax2bx20200有一根为x1,则a+b_16两个相似多边形的一组对应边分别为
4、2cm和3cm,那么对应的这两个多边形的面积比是_17如图,在平行四边形中,点、在双曲线上,点的坐标是,点在坐标轴上,则点的坐标是_.18如图,P是的边OA上一点,且点P的坐标为(3,4),则=_. 三、解答题(共78分)19(8分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,求的半径20(8分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字2,1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张
5、,把卡片正面上的数字记为y;然后他们计算出S=x+y的值(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S2时的概率21(8分)如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AEBFCGDH.(1)求证:四边形EFGH是矩形;(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DGAC,OF2cm,求矩形ABCD的面积22(10分)如图,、交于点,且平分(1)求证:;(2)若,求的长23(10分)如图1,已知抛物线yx2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1
6、,再过点A作1的垂线,垂足为Q,连接AP(1)求抛物线的函数表达式和点C的坐标;(2)若AQPAOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将APQ沿AP对折,点Q的对应点为点Q,请直接写出当点Q落在坐标轴上时点P的坐标24(10分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_名学生; (2)请将两个统计图补充完整; (3
7、)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.25(12分)有1张看上去无差别的卡片,上面分别写着1、2、1随机抽取1张后,放回并混在一起,再随机抽取1张(I)请你用画树状图法(或列表法)列出两次抽取卡片出现的所有可能结果;()求两次抽取的卡片上数字之和为偶数的概率26如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?参考答案一、选择题(
8、每题4分,共48分)1、D【分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.2、D【分析】利用对应点的连线都经过同一点进行判断【详解】如图,位似中心为点D故选D【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心注意:两个图形必须是相似形;对应点的连线都经过同一点
9、;对应边平行3、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知 故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.4、A【解析】由抛物线开口方向得到a1,根据抛物线的对称轴为直线x=-1得b1,由抛物线与y轴的交点位置得到c1,则abc1;观察函数图象得到x=-1时,函数有最大值;利用抛物线的对称性可确定抛物线与x轴的另一个交点坐标为(-3,1),则当x=1或x=-3时,函数y的值等于1;观察函数图象得到x=2时,y1,即4a+2b+c1【详解】解:抛物线开口向下,a1,抛物线的对称轴为直线x=-1,b=2a1,abc1,所以正确;抛物线开口向下,对称轴
10、为直线x=-1,当x=-1时,函数有最大值,所以正确;抛物线与x轴的一个交点坐标为(1,1),而对称轴为直线x=-1,抛物线与x轴的另一个交点坐标为(3,1),当x=1或x=-3时,函数y的值都等于1,方程ax2+bx+c=1的解是:x1=1,x2=-3,所以正确;x=2时,y1,4a+2b+c1,所以错误.故选A.【点睛】解此题的关键是能正确观察图形和灵活运用二次函数的性质,能根据图象确定a、b、c的符号,并能根据图象看出当x取特殊值时y的符号5、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长
11、方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置6、A【分析】由抛物线y2x2得到顶点坐标为(0,0),而平移后抛物线y2(x+1)23的顶点坐标为(1,3),根据顶点坐标的变化寻找平移方法【详解】根据抛物线y2x2得到顶点坐标为(0,0),而平移后抛物线y2(x+1)23的顶点坐标为(1,3),平移方法为:向左平移1个单位,再向下平移3个单位故选:A【点睛】本题主要考查了抛物线的平移,熟练掌握相关概念是解题关键.7、A【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S
12、扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90,AC=BC=1,AB=,S扇形ABD=,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.8、B【分析】设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,此时高为18米的旗杆
13、的影长为30m故选:B【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键9、B【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】解:,移项得:,合并同类项得:,系数化为1得,在数轴上表示为:故选:B【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示10、A【分析】连接OD,如图,利用折叠
14、性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=1,CD=3,从而得到CDO=30,COD=10,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC1,CD,CDO30,COD10,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD1,阴影部分的面积为1.故选A【点睛】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性
15、质11、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值【详解】解:m是方程x2-2006x+1=0的一个根,m2-2006m+1=0,即m2+1=2006m,m2=2006m1,则=2006+2=2008故选:D【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值12、C【分析】设BC=x,可得AC=2x,RtABC中利用勾股定理算出AB=x,然后利用三角函数在直角三角形中的定义,可算出sinA的值【详解】解:由AC=2BC,设BC=x,则AC=2x,RtABC中,C=90,根据勾股定理
16、,得AB=.因此,sinA=故选:C.【点睛】本题已知直角三角形的两条直角边的关系,求角A的正弦之值着重考查了勾股定理、三角函数的定义等知识,属于基础题二、填空题(每题4分,共24分)13、【分析】连接OA,OE根据正五边形求出AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OEABCDE是正五边形,AOE= =72,APE= AOE=36【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.14、【分析】根据圆内接四边形的对角互补,即可求得答案【详解】四边形ABCD是O的内接四边形,故答案为:【点睛】主要考查圆内接四边形的性质及圆周
17、角定理15、1【分析】由方程有一根为1,将x1代入方程,整理后即可得到a+b的值【详解】解:把x1代入一元二次方程ax2bx10得:a+b10,即a+b1故答案为:1【点睛】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程16、4:9【分析】根据相似三角形面积的比等于相似比的平方列式计算即可【详解】解:因为两个三角形相似,较小三角形与较大三角形的面积比为( )2= ,故答案为:.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键17、【分析】先根据点A的坐标求出双曲线的解析式,然后根据点B,
18、C之间的纵坐标之差和平行四边形的性质求出点D的坐标即可.【详解】点在双曲线上 点B,点在坐标轴上B,C两点的纵坐标之差为1四边形ABCD是平行四边形AD/BC,AD=BCA,D两点的纵坐标之差为1D点的纵坐标为 的坐标是故答案为【点睛】本题主要考查反比例函数及平行四边形的性质,掌握待定系数法及平行四边形的性质是解题的关键.18、【解析】点P的坐标为(3,4),OP=,.故答案为:.三、解答题(共78分)19、(1)证明见解析;(2)的半径为2.1【分析】(1)连接,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定
19、证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论【详解】(1)证明:如图,连接,过作于点,是底边的中点,是的切线,是的切线;(2)解:如图2,连接,过作于点点是的中点,在和中,设的半径为由勾股定理得:DK2OK2=OD2即,解得:的半径为【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键20、(1)答案见解析;(2),【解析】试题分析:列举出符合题意的各种情况的个数,再根据概率
20、公式解答即可解:(1)画树状图,(2)由图可知,所有可能出现的结果有12种,其中S=0的有2种,S2的有5种,P(S=0)=,P(S2)= .21、 (1)证明见解析;(2)矩形ABCD的面积为16(cm2)【解析】(1)首先证明四边形EFGH是平行四边形,然后再证明HF=EG;(2)根据题干求出矩形的边长CD和BC,然后根据矩形面积公式求得【详解】证明:四边形ABCD是矩形,OAOBOCOD.AEBFCGDH,AOAEOBBFCOCGDODH,即OEOFOGOH,四边形EFGH是矩形解:G是OC的中点,GOGC.又DGAC,CDOD.F是BO中点,OF2cm,BO4cm.DOBO4cm,DC
21、4cm,DB8cm,CB4 (cm),矩形ABCD的面积为4416 (cm2)【点睛】本题主要考查矩形的判定,首先要判定四边形是平行四边形,然后证明对角线相等22、(1)见解析;(2)【分析】根据题意依据(AA)公理证明即可根据相似三角形性质对应边成比例求解即可【详解】证明:(1),平分,又(2)又,【点睛】本题考查了相似三角形的判定和性质23、 (1)yx2+3x+4;(1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,6)或(2,6).【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用AQPAOC得
22、到AQ4PQ,设P(m,m2+3m+4),所以m4|4(m2+3m+4|,然后解方程4(m23m)m和方程4(m23m)m得P点坐标;(3)设P(m,m2+3m+4)(m),当点Q落在x轴上,延长QP交x轴于H,如图2,则PQm23m,证明RtAOQRtQHP,利用相似比得到QB4m12,则OQ123m,在RtAOQ中,利用勾股定理得到方程42+(123m)2m2,然后解方程求出m得到此时P点坐标;当点Q落在y轴上,易得点A、Q、P、Q所组成的四边形为正方形,利用PQPQ得到|m23m|m,然后解方程m23mm和方程m23mm得此时P点坐标【详解】解:(1)把A(0,4),B(4,0)分别代入
23、yx2+bx+c得,解得,抛物线解析式为yx2+3x+4,当y0时,x2+3x+40,解得x11,x24,C(1,0);故答案为yx2+3x+4;(1,0);(2)AQPAOC,即AQ4PQ,设P(m,m2+3m+4),m4|4(m2+3m+4|,即4|m23m|m,解方程4(m23m)m得m10(舍去),m2,此时P点横坐标为;解方程4(m23m)m得m10(舍去),m2,此时P点坐标为;综上所述,点P的坐标为(,)或(,);(3)设,当点Q落在x轴上,延长QP交x轴于H,如图2,则PQ4(m2+3m+4)m23m,APQ沿AP对折,点Q的对应点为点Q,AQPAQP90,AQAQm,PQPQ
24、m23m,AQOQPH,RtAOQRtQHP,即,解得QH4m12,OQm(4m12)123m,在RtAOQ中,42+(123m)2m2,整理得m29m+200,解得m14,m25,此时P点坐标为(4,0)或(5,6);当点Q落在y轴上,则点A、Q、P、Q所组成的四边形为正方形,PQAQ,即|m23m|m,解方程m23mm得m10(舍去),m24,此时P点坐标为(4,0);解方程m23mm得m10(舍去),m22,此时P点坐标为(2,6),综上所述,点P的坐标为(4,0)或(5,6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题
25、的关键是:熟练掌握待定系数法求函数解析式;能够熟练掌握相似三角形的判定和性质;能够熟练掌握一元二次方程的解法;理解折叠的性质.24、 (1)200;(2)答案见解析;(3)240人【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由105%即可求得总人数为200人;(2)由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;由80200100%可得喜欢A项运动的人所占的百分比;由30200100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由120020%可得全校喜欢“排球”运动的人数.【详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,这次抽查的总人数为:105%=200(人);(2)由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,喜欢A项运动的人数为:200-10-40-30-40=80,喜欢A项运动的人所占的百分比为:8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄山学院《电视节目制作》2023-2024学年第一学期期末试卷
- 淮阴师范学院《描述统计实训》2021-2022学年第一学期期末试卷
- 黄山学院《抽样查实践》2021-2022学年第一学期期末试卷
- 淮阴师范学院《中学语文名篇讲析》2022-2023学年第一学期期末试卷
- 淮阴师范学院《小学课程与教学论》2021-2022学年第一学期期末试卷
- 淮阴工学院《市场营销学》2021-2022学年第一学期期末试卷
- 淮阴师范学院《Python语言程序设计》2021-2022学年期末试卷
- DB6110-T 56-2024《毛木耳短袋地摆栽培技术规程》
- DB4106T132-2024电梯使用单位安全主体责任落实规范
- 一年级20以内口算、速算、练习题100道
- 液压动力滑台的PLC控制新版专业系统设计
- 2024年北京出版集团有限责任公司招聘笔试冲刺题(带答案解析)
- 24春国家开放大学《教育学》期末大作业
- 2024年长沙航空职业技术学院单招综合素质考试题库附答案(研优卷)
- MOOC 自然保护与生态安全:拯救地球家园-暨南大学 中国大学慕课答案
- 基于PLC的自动灌溉控制系统设计-本科毕业设计
- 六年级信息科技上全册教案 浙教版2023年
- 【体能大循环】聚焦体能循环-探索运动奥秘-幼儿园探究体能大循环有效开展策略课件
- 乳房下垂个案护理
- AI在航空航天领域中的应用
- 《果树嫁接技术》课件
评论
0/150
提交评论