华师版数学八年级数学上教案全套_第1页
华师版数学八年级数学上教案全套_第2页
华师版数学八年级数学上教案全套_第3页
华师版数学八年级数学上教案全套_第4页
华师版数学八年级数学上教案全套_第5页
已阅读5页,还剩187页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、华师版数学八年级数学上教案【全套精品】第十一章平移与旋转教学内容: 11.1 平移教学目标:知识与技能目标:1通过具体实例认识图形的平移变换,探索它的基本性质. 2能按要求作出简单的平面图形平移后的图形.3、要明确平面图形的平移变换,不少平面图案都可以看作是由其中的某一部分,沿着上下或左右的方向,平移若干次而成的过程与方法目标: 通过具体实例认识图形的平移变换,通过现实生活中各种丰富的实例,让学生体会图形的平移现象,让学生通过各种图形的平移,体验感受图形平移的主要因素是移动的方向和移动的距离. 探索它的基本性质。情感与态度目标:认识和欣赏这些图形的平移变换在现实生活中的应用,体会到数学与实际生

2、活的密切联系,认识到数学的价值。教学重、难点与关键:重点:平移的基本内涵与基本性质难点:发现原图形与平移后图形间的关系。关键:平移特征的探索及理解。教辅工具:教学时间安排:3教时第1教时 图形的平移1教学程序设计:程序教师活动学生活动备注创设问题情景1、投影:引言及插图。2、回忆游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯3、观察图片中传送带上的电视机与手扶电梯上的人,回答以下问题: (1)传送带上每台电视机做什么运动?手扶电梯上的人呢? (2)传送带上的电视机的形状、大小在运动前后是否发生了改变?手扶电梯上的人呢? (3)在传送带上,如果电视机的某一按键向前移动了80cm (4)如

3、果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(课件演示),那么四边形ABCD与四边形EFGH的形状、大小是否相同?4、图案欣赏(课件演示)学生看投影并思考问题引出内容:图形的平移与旋转,并进行初步分类,引出本节课研究内容:生活中的平移。探究新知11平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。2它由什么要素决定?3对应点、对应线段、对应角1举一些生活中平移的实例。2学生回答问题3、指出图中的对应点、对应线段、对应角4试一试反馈训练应用提高教材:P3页练习1、2、31题分组举出实例2题学生讨论后回答3题动手

4、画探究新知2(二)、探索平移的基本性质:1、想一想:(课件演示)(1)在上图中,线段AE,BF,CG,DH有怎样的位置关系?(2)图中每对对应线段之间有怎样的位置关系?(3)图中有哪些相等的线段、相等的角?2、归纳平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。3、做一做:(课件演示)如图所示,ABE沿射线XY的方向平移一定距离后成为的平行且相等的三条线段和一组全等三角形.学生分组讨论分组回答学生讨论后回答边看边思考回答。5、讨论后回答反馈训练应用提高1、练习:P7页1、2、32思考:图中的四个小三角形都是等边三角形,边长为2cm,能通过平移ABC得到其它

5、三角形吗?若能,请画出平移的方向,并说出平移的距离.按照要求完成。讨论完成。小结提高回顾本节课的活动过程:观察分析探索概括。2、本节课学到了哪些知识和方法?学生讨论回答布置作业教材第7页习题1、2。反思第2教时 图形的平移2教学程序设计:程序教师活动学生活动备注创设问题情景上节课你学到了什么?举例举一些生活中平移的实例。探究新知1投影:例1如图(1),ABC经过平移到ABC的位置,指出平移的方向,并量出平移的距离。投影:试一试在如图的方格纸中,画出将图中的ABC向右平移5格后的ABC,然后再画出将ABC向上平移2格后的ABC。ABC是否可以看成是ABC经过一次平移而得到的呢?如果是,那么平移的

6、方向和距离分别是什么呢?投影:做一做如图,在纸上画ABC和两条平行的对称轴m、n。画出ABC关于直线m对称的ABC,再画出ABC关于直线n对称的ABC。观察ABC和ABC,你能发现这两个三角形有什么关系吗? 例1:先看懂题意,看教师演示,从中体会平移的方向和距离。在课本上画出来,并回答题目问题。学生充分地动手,可在小组讨论得出:两次轴对称得到的图形实际进行了一次平移。反馈训练应用提高平移方格纸中的图形(如图),使点A平移到点A处,画出平移后的图形。2图案欣赏(提高认识)按照要求完成后,相互检查讨论完成。小结提高1、回顾本节课的活动过程:观察分析探索概括。2、本节课学到了哪些知识和方法?学生讨论

7、回答布置作业教材第8页习题3、4。反思第3教时 图形的平移练习教学程序设计:程序教师活动学生活动备注创设问题情景前面你学到了什么?举例举一些生活中平移的实例。探究新知1例:图中的四个小三角形都是等边三角形,边长为2cm,能通过平移ABC得到其它三角形吗?若能,请画出平移的方向,并说出平移的距离.随堂练习:(投影)填空:(1)将线段AB向右平移3cm得到线段CD,如果AB=5 cm,则CD=(2)将ABC向上平移10cm得到EFG,如果ABC=52,则EFG= BF= cm.(3)将面积为30cm2的等腰直角三角形ABC向下平移20cm,得到MNP,则MNP是 三角形,它的面积是 cm图中小船经

8、过平移到了新的位置,你发现少了什么?请补上.3、如图1,在四边形ABCD中,ADBC,AB=CD,ADBC,要探究B与C的关系,可以采用平移的方法(如图2、3)。请你分别说明图形的形成过程,同时判断B与C的关系并叙述理由,你还有其他方法吗?请在图1中画出你的方案。先看懂题意,分组讨论,得出结论,然后全班交流。学生独立完成后交流。教师注意讲评教师注意讲评小结提高1、回顾本节课的活动过程: 2、本节课学到了哪些知识和方法?学生讨论回答布置作业教材第25页习题2、3。反思教学内容: 11.2 旋转教学目标:知识与技能目标:31认识图形的旋转变换,掌握它的基本性质. 过程与方法目标:1.、通过具体实例

9、认识图形的旋转变换,探索它的基本性质.引导学生,探索发现原图形经过旋转后的对应点、对应线段之间的位置关系与数量关系.体验感受图形旋转的主要因素是旋转中心和旋转的角度,从而体会到图形在旋转过程中,图形中的每一点都绕着旋转中转动了相同的角度2认识旋转对称图形,理解旋转对称图形的概念,重视对学生自行设计旋转对称图形的能力的培养,并能够按要求作出简单的平面图形旋转后的图形.情感与态度目标:认识和欣赏这些图形的旋转变换在现实生活中的应用,体会到数学与实际生活的密切联系,经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、交流等活动,发展初步的审美能力,增强对图形欣赏的意识。教学重、难点与关键:重点:旋

10、转变换的基本性质,并能根据性质作出简单的平面图形旋转后的图形。难点:旋转变换的基本性质的探索,作出简单的平面图形旋转后的图形。关键:认识理解旋转变换的基本性质,理解旋转对称图形,培养学生动手操作能力。教辅工具: 教时安排:4教时(即第47教时)第4教时教学程序设计:程序教师活动学生活动备注创设问题情景课件演示,旋转而动产生的奇妙画面。你能自己举出日常生活中的一些事例吗?学生对每一种画面谈谈自己的看法。让学生扩展思维,列举生活中还有哪些旋转图形。探究新知11观察图形找出这些图形的共同特征:2.概念:旋转、旋转中心 观察、分析、讨论出共同特征。它们绕上面的悬挂点转动2理解概念:旋转中心在旋转过程中

11、保持不动,图形的旋转由旋转中心和旋转的角度所决定。探究新知21做一做用一张半透明的薄纸,覆盖在画有任意AOB的纸上,在薄纸上画出与AOB重合的一个三角形。然后用一枚图钉在点O处固定,将薄纸绕着图钉(即点O)转动一个角度45,薄纸上的三角形就旋转到了新的位置,标上A、O、B,我们可以认为AOB旋转45后到了上AOB。在这样的旋转过程中,你发现了什么?做一做后,讨论回答:图中,可以看到点A旋转到点A,OA旋转到OA, AOB旋转到AOB,这些都是互相对应的点、线段与角。那么点B的对应点是_;线段OB的对应线段是线段_;线段AB的对应线段是线段_;A的对应角是_;B的对应角是_;旋转中心是点_;旋转

12、的角度是_。探究新知3做一做如图,如果旋转中心在ABC的外面点O处,转动60,将整个ABC旋转到ABC的位置。那么这两个三角形的顶点、边与角是如何对应的呢?1学生尝试2交流探究新知41、 如图,ABC是等边三角形,D是BC上一点,ABD经过旋转后到达ACE的位置。旋转中心是哪一点?旋转了多少度?如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?2、如图(1),点M是线段AB上一点,将线段AB绕着点M顺时针方向旋转90,旋转后的线段与原线段的位置有何关系?如果逆时针方向旋转90呢?反馈训练应用提高空间想象力的训练注意讲评小结提高说说“旋转”的概念,旋转的等量关系。说说描述“旋转”的过程

13、要注意哪几方面?讨论、体会。布置作业课本P11页2、3反思第5教时教学程序设计:程序教师活动学生活动备注创设问题情景回顾旋转的概念理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。探究新知1探索观察上面两个图形,你能发现有哪些线段相等?有哪些角相等?你认为图形旋转的特征是什么?教师组织学生分组讨论。分组讨论交流。完成下面填空:图中,线段OA、OB都是绕点O旋转45角到对应线段OA与OB,而且OA_,OB_,AB_;AOB_,A_,B_。在图中,旋转中心是点O,点A、B、C都是绕点O旋转60角到对应点A、B、C,而且OA_,OB_,OC_;AB_,BC_,CA_;C

14、AB_,ABC_,BCA_。讨论后统一意见:图形中每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状与大小都没有发生变化反馈训练应用提高练习1确定图形中的旋转中心,指出这一图形是由哪个基本图形旋转多少度、旋转几次而生成的(不计颜色)。2画出ABC绕点C逆时针旋转90后的图形。反馈训练应用提高空间想象力的训练注意讲评小结提高说说“旋转”的概念,旋转的等量关系。说说描述“旋转”的过程要注意哪几方面?讨论、体会。布置作业画出所给图形绕点O顺时针旋转90后的图形。旋转几次后可以与原图形重合?反思第6教时教学程序设计:程序教师活动学生活动备注创设问

15、题情景2.如图,画出ABC绕O点顺时针旋转60的图形ABC. 1.理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。2.学生独立完成。探究新知1实验1、画出正方形绕对角线的交点顺时针旋转90的图形.观察旋转后的图形与原正方形有何关系?实验2如图所示,电扇的叶片转动120、螺旋桨转动180后,都能与自身重合。你能再举出一些这样的实例吗?实验3、用一张半透明的薄纸,覆盖在如所示的图形上,在薄纸上画这个图形,使它与如图11.2.9所示的图形重合。然后用一枚图钉在圆心处穿过,将薄纸绕着图钉旋转,观察旋转多少度(小于周角)后,薄纸上的图形能与原图形再一次重合。问题:前面3个

16、实验有什么共同的特性?概念:旋转对称图形:绕着某一点旋转一定角度(小于周角)后能与自身重合的图形.1一个正方形,和大头针,进行实验,并回答问题。作图后发现,正方形旋转90后与原图形重合。2、在日常生活中,我们经常可以看到,一些图形绕着某一定点转动一定的角度后能与自身重合。3、小组讨论,全班交流。4、独立操作完成,小组交流谈心得。5、讨论得出:绕着某一点旋转一定角度后能与自身重合的图形.操作训练操作1:用类似上述的操作方法对如图所示的图形进行探索,看看它是不是旋转对称图形?想一想旋转中心在何处?该图形需要旋转多少度后,能与自身重合?该图形是轴对称图形吗?操作2:图所示的图形是轴对称图形,用类似上

17、述的操作方法对图11.2.11所示的图形进行探索,它能通过旋转与自身重合吗?用半透明的薄纸覆盖在如.10所示的图形重合。独立操作完成。用半透明的薄纸覆盖在如所示的图形上,在薄纸上画这个图形,使它与如图11.2.10所示的图形重合。独立操作完成。反馈训练应用提高找找看,下面图形中有几匹马?它们的位置关系如何?如图所示的图形绕哪一点旋转多少度后能与自身重合?3如图,画出ABC绕O点逆时针旋转60的图形ABC. 反馈训练应用提高空间想象力的训练注意讲评小结提高说说“旋转对称”的概念。说说描述“旋转对称”的过程要注意哪几方面?讨论、体会。布置作业P15页1、2、3、4想一想:正方形旋转180后能与自身

18、重合吗?还能旋转几度与自身重合? 正五边形、正六边形、正七边形最小旋转多少度能与自身重合?反思第7教时教学程序设计:程序教师活动学生活动备注创设问题情景2. 举出日常生活中旋转对称图形的几个实例3在纸上任意画一个ABC,再任意画一条直线,然后画出ABC关于这条直线对称的图形。(复习轴对称)1.理解概念: 2.学生独立完成。探究新知1做一做如图,在纸上画ABC和过点P的两条直线PQ、PR。画出ABC关于PQ对称的三角形ABC,再画出ABC关于PR对称的三角形ABC。观察ABC和ABC,你能发现这两个三角形有什么关系吗?结论:如果两条对称轴相交于一点,那么两次翻折就相当于一次旋转,且两条对称轴的交

19、点为旋转中心.1按照要求独立操作完成,小组交流谈心得。 3、小组讨论,全班交流。4、归纳出结论操作训练1、你能设计分别一个旋转30、45后能与自身重合的图形吗?比一比,看谁设计得最好。如图请你通过平移,或轴对称,或旋转,设计出更加美丽、更加大型的图案试一试,可以分小组进行。利用教材后面的方格若课上不能完成,移作课外作业。小结提高两次翻折(对称轴相交)与图形旋转的关系平移,或轴对称,或旋转构成了生活中美丽的图案讨论、体会。布置作业利用平移,或轴对称,或旋转设计图案。反思教学内容: 11.3 中心对称教学目标:知识与技能目标:1、通过具体实例认识中心对称,探索它的基本性质,理解: “连结对称点的线

20、段都经过对称中心,并且被对称中心平分”, “中心对称是旋转角度为180的特殊的旋转对称” 2、发展学生的合情推理能力,进一步培养学生的数学说理的习惯与能力.过程与方法目标:1、让学生自己通过丰富的具体图形认识中心对称与中心对称图形,探索它的基本性质,体会中心对称图形是旋转角度为 180的特殊的旋转对称图形2、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生的数学说理的习惯与能力.情感与态度目标:认识和欣赏这些特殊的旋转变换在现实生活中的应用,体会到数学与实际生活的密切联系,经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、交流等活动,发展初步的审美能力,增强对图

21、形欣赏的意识。教学重、难点与关键:重点:中心对称的基本性质,并能根据性质作出简单的平面图形中心对称图形。难点:中心对称的基本性质的探索,作出简单的平面图形中心对称图形。关键:认识理解中心对称的基本性质,理解中心对称图形。教辅工具: 教时安排:3教时(即第810教时)第8教时教学程序设计:程序教师活动学生活动备注创设问题情景课件演示如图所示的三个图形都是旋转对称图形。上面图形中哪个图形旋转180能与自身图形重合?你能自己举出日常生活中旋转180的一些事例吗?学生对每一种画面谈谈自己的看法。让学生扩展思维,列举生活中还有哪些旋转图形。探究新知11、一个图形绕着中心点旋转180后能与自身重合,我们就

22、把这种图形叫做中心对称图形, 这个中心点叫做对称中心。你能举一些中心对称图形吗?他们的对称中心在哪里?2、把一个图形绕着某一点旋转180,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点,叫做关于中心的对称点如图所示,ABC与ADE就是成中心对称的两个三角形,点A是对称中心, 1、解概念:中心对称图形是指一个图形。是旋转角度为180的旋转对称图形。举出例子。2、中心对称是指两个图形间的关系。3、点B关于对称中心A的对称点为点_,点C关于对称中心的对称点为点_,点A关于对称中心A的对称点为点_。点B绕着点A旋转180到达点D处,因此,B、A

23、、D三点在同一条直线上,并且AB 。讨论得出:可以发现,点A绕中心点O旋转180后到点A,于是A、O、A三点在一直线上,并且AO_,另分别在一直线上的三点还有_,_;并且BO_,CO_。探究新知2探索在图中,ABC与ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?归纳板书:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。反过来,如果两个图形的对应点连成的线段都经过某一点,并且被平分,那么这两个图形一定关于这一点成中心对称。讨论归纳:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分探究新知3例:如图(1),已知ABC和点O,画出

24、DEF,使DEF和ABC关于点O成中心对称。解:(1)连结AO并延长AO到D,使ODOA,于是得到点A的对称点D;(2)同样画出点B和点C的对称点E和F;(3)顺次连结DE、EF、FD。如图(2),DEF即为所求的三角形。学生先画。试着写出作图步骤。看教师的板书,体会。反馈训练应用提高课本P18页1、2读一读P19页完成在课本上。小结提高说说中心对称和中心对称图形的区别和联系。中心对称有什么基本的性质?讨论、体会。布置作业课本P21页1、2反思第9教时教学程序设计:程序教师活动学生活动备注创设问题情景回顾中心对称、中心对称图形及其基本性质。积极回答探究新知11、点A和O,求作A关于O点对称的图

25、形。2、已知线段AB和点O,求作AB关于点O对称的图形。3、已知三角形ABC和点O,求作三角形ABC关于点O对称的图形。4、已知四边形ABCD和点O,求作四边形ABCD关于点O对称的图形。学生独立完成。试着写出作图步骤。探究新知2试一试:如图所示的两个图形成中心对称,你能找到对称中心吗?说说你这样画的理由。学生可在课本上直接画。根据基本性质反馈训练应用提高课本P21页1完成在课本上。小结提高说说中心对称和中心对称图形的区别和联系。中心对称有什么基本的性质?讨论、体会。布置作业课本P22页3、4反思第10教时教学程序设计:程序教师活动学生活动备注创设问题情景回顾中心对称、中心对称图形及其基本性质

26、。回顾轴对称、轴对称图形及其基本性质。并完成1、点A和直线l,求作A关于l对称的图形。2、已知线段AB和点l,求作AB关于点l对称的图形。3、已知三角形ABC和点l,求作三角形ABC关于点l对称的图形。积极回答独立完成。探究新知1做一做如图,在纸上画ABC、点P,以及与ABC关于点P成中心对称的三角形ABC。过点P任意画一条直线,画出ABC关于此直线对称的ABC,如图。观察ABC和ABC,这两个三角形对称吗?画出使这两个三角形成轴对称的对称轴,你发现了什么?两次翻折(对称轴互相垂直)与中心对称的关系:如果对称轴互相垂直,那么两次翻折就相当于一次中心对称,且两条对称轴的垂足为对称中心.一步一步地

27、独立完成。分小组讨论,两次翻折(对称轴互相垂直)与中心对称的关系:得出结论。反馈训练应用提高1、如图,已知ABC和过点O的两条互相垂直的直线x、y,画出ABC关于直线x对称的ABC,再画出ABC关于直线y对称的ABC,ABC与ABC是否关于点O成中心对称?阅读材料:古建筑中的旋转对称 从敦煌洞窟到欧洲教堂学生可在课本上直接画。提高审美能力。小结提高两次翻折(对称轴互相垂直)与中心对称的关系。讨论、体会。布置作业课本P22页3、4反思教学内容:小结教学目标:知识与技能目标:复习巩固基本变换的概念及其基本性质,熟练掌握各种基本变化画法。过程与方法目标:进一步体会培养学生之间合作、自主式的学习方法。

28、情感与态度目标:认识和欣赏这些基本变换在现实生活中的应用,体会到数学与实际生活的密切联系,经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、交流等活动,发展审美能力,增强对图形欣赏的意识,进一步体会数学的价值,教学重、难点与关键:用知识结构中的要点自查掌握情况。教辅工具:多媒体,投影仪分为2教时,即第11、12教时第11教时教学程序设计:一、知识回顾:投影:说明:采用边复习边展开的方式进行。注意鼓动学生的积极参与。程序教师活动学生活动备注应用举例与反馈训练1投影1:课本第25页1题 巡视、评价。2投影2:课本第25页2题。巡视、评价。3投影3:课本第26页3题。巡视、评价。4投影4:课本第

29、26页B组7题。 5投影5:课本第27页C组10题。1动笔解答,谈自己的解题思路。2动笔解答,谈自己的解题思路。 3动笔解答,谈自己的解题思路。4动笔解答,谈自己的解题思路。5.学生可以借助实物观察。小结提高1.平移、旋转与轴对称都是图形之间的一些主要变换,在这些变换下,线段的长度与教的大小都没有改变,图形的形状与大小都没有发生变化。2 自我评价体会布置作业A组:第26页复习题:4、5、6B组:第27页8、9反思第12教时教学程序设计:程序教师活动学生活动备注理清知识结构图重复投影第20页知识结构图采用边复习边展开的方式进行。注意鼓动学生的积极参与。再次理清知识结构。操作实践1用硬纸板剪出两个

30、同样大小的三角形,按照下列两种情况将ABC和ABC放在桌面上。动手试一试,如何通过平移、旋转与轴对称将ABC运动到ABC上,使两者互相重合。与你的伙伴交流一下,看看谁的办法多。分小组进行。操作实践2现有如图所示的6种瓷砖,请用其中的4块瓷砖(允许于相同的),设计出美丽的图案。然后通过你设计的图案,通过平移,或轴对称,或旋转,设计出更加美丽、更加大型的图案。利用课本后面方格准备材料,根据自己的情况设计出美丽的图案。(注意,不能与题目相同)小组展示,全班展示交流。小结提高1自我评价。 体会布置作业A组:第21页复习题:4、6、8、12、13B组:第22页15反思第13教时单元检测题目选用:试卷分析

31、:1检测情况:考试人数总分平均分及格率优生率90以上89/8079/6059/4039以下2存在的主要问题:第12章 平行四边形12.1 平行四边形1、平行四边形的特征(1)教学目标 1认识平行四边形是中心对称图形。 2理解平行四边形其边、角之间的位置关系和数量关系。 3理解并掌握平行四边形的特征。 4能灵活运用平行四边形的特征并进行简单的推理证明。教学重点与难点重点:平行四边形的特征与性质的探索过程。难点:发展学生的合情推理能力。教学准备图钉、方格纸、剪刀、直尺、三角板等。教学过程一、提问。 1平行四边形是同学们常见的平面图形,你见过那些物体具有平行四边形的形状?2你能从如图所示的图形中找出

32、平行四边形吗?二、新授。 1按课本第30页的“探索”画图。2剪下平行四边形,沿平行四边形的各边再在一张纸上画一个平行四边形,各顶点记为A、B、C、D。通过连结对角线得交点O,用一枚图钉穿过点O,把其中一个平行四边形绕点。旋转,观察旋转180后的图形与原来的图形是否重合。重复旋转几次,看看是否得到同样的结果。 问题1:平行四边形是否是中心对称图形? 问题2:请说出平行四边形边、角之间的位置关系和数量关系。 (出题的目的在于激发学生的积极性,培养学生的数学思维能力。) 3小组讨论,探索结果。 平行四边形的对边相等,对角相等。 (整个过程注意引导学生观察、思考、发现问题。有的学生可能发现对角线互相平

33、分,要及时鼓励和肯定,表扬学习积极性较强的学生。) 三、应用举例。1例1 如图,在平行四边形ABCD中,已知A=40,求其他各个内角的度数。 (该题可以将A=40改为B=140,培养学生的发散思维能力。) 2拓展延伸。如图,在平行四边形ABCD中,已知BAC=20,求各内角的度数。3例2 如图,在平行四边形ABCD中,已知AB=8,周长等于24,求其余三条边的长。四、巩固练习。课本第38页习题121的第1题。五、课堂小结。这节课你有什么收获?学到了什么?还有什么疑问吗?六、布置作业。 1课本第32页练习的第2题。 2、平行四边形的特征(2)教学目标 1进一步认识平行四边形是中心对称图形。 2掌

34、握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。3充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。教学重点与难点重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。难点:发展学生的合情推理能力。教学准备直尺、方格纸。 教学过程一、提问。 1平行四边形的特征:对边( ),对角( )。2如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果B=55,那么D与DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。) 二、引导观察。 1按照课本第30页“探索”画一个平行四边形ABCD

35、,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。 2在如课本图那样的旋转过程中,你观察到OA与OC、OB与 OD的关系了吗? 通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。(培养学生用自己的语言叙述性质。)三、应用举例。如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。 (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。) 例3 如图,在平行四边形ABCD中,已知对角线AC和BD相

36、交相于点O,AOB的周长为15,AB=6,那么对角线AC与BD的和是多少? (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)四、巩固练习。 1如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。 2在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么AOB的周长是( ),BOC的周长是( )。 3平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,AOB的周长是18厘米,那么AOD的周长是( )厘米

37、。 4.试一试。 在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。 5.练习。如图,如果直线l1l2那么ABC的面积和DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与ABC面积相等的三角形吗?五、看谁做得又快又正确?课本第34页练习的第一题。六、课堂小结这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?七、作业补充习题3、平行四边形的识别教学目标 1在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生

38、数学说理的习惯与能力。 2在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。3培养学生独立思考的习惯。教学重点与难点重点:探索平行四边形的识别方法。难点:理解平行四边形的识别方法与应用。教学准备方格纸、直尺、图钉、剪刀。教学过程一、提问。 1平行四边形对边( ),对角( ),对角线( )。2.( )是平行四边形。二、探索,概括。 1探索。 (1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。 步骤1:画一线段AB。 步骤2:平移线段AD到BC。 步骤3:连结AB、DC,得到四边形ABCD,其中ADBC,AD=B

39、C。(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。 根据上述的过程,能否断定这个四边形是平行四边形? 2概括。 我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而ABDC,又ADBC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到: 一组对边平行且相

40、等的四边形是平行四边形。 (一步一步的引导学生得出结论,然后让学生用自己的语言叙述。) 三、应用举例。 例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。 四、巩固练习。如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。五、拓展延伸。在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?六、看谁做的既快又正确?七、课堂小结。这节课你有什么收获?学到了什么?还有什么疑问吗?八、布置作业。补充习题 122几种特殊的平行四边形1、矩 形教学目标 1探索并掌握矩

41、形的概念及其特殊的性质。 2学会识别矩形。3在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。教学重点与难点重点:矩形特殊特征与性质的探索过程。难点:学生数学说理能力的培养。教学准备矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。教学过程一、提问。 1平行四边形的特征:对边( ),对角( ),对角线( )。 2如图,在平等四边形ABCD中,AE垂直于BC,E是垂足。如果AB=55,那么AD与DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征与识别。)二、引导观察。如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上

42、轻轻地推动点D,你会发现什么? 可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状。 问题:我们若改变平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形? (教师移动D点,使=90,让学生观察。)从而导人课题:矩形。三、探索特征。 1探索。 请你作矩形纸板的对角线,探索矩形有哪些特征,并填空。 (从边、角、对角线入手。) (1)边:对边相等;(2)角:四个角都相等;(3)对角线:相等。 (学生通过自己的操作、观察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。) 2请你折一折,观察并填空。 (1)矩形是不是中心对称图形? 对称

43、中心是( ) 。(2)是不是轴对称图形?对称轴有几条?( )。四、应用举例。 1例1 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86厘米,对角线长是13厘米,那么矩形的周长是多少? (矩形的简单的计算问题必须要求学生掌握。此题教师板演,让学生说出理论依据。) 2请你思考。识别一个四边形是不是矩形的方法。(学生的回答不一定很完整,可以多让几个学生相互补充,逐步完善,最后教师适当的给以点拔。) 五、巩固练习。1如图,在矩形ABCD中,找出相等的线段与相等的角。2如图,矩形ABCD的两条对角线交于点O,且AOD=120,你能说明 AC=2AB吗?六、拓展延伸。1如图

44、,已知矩形ABCD的两条对角线相交于点O,AOD=120,AB =5厘米,求矩形对角线的长。2工人师傅在做门框或矩形零件时,常常测量它们的两条对角线是否相等来检查直角的精度,为什么?七、课堂小结。这节课你有什么收获?学到了什么?有什么疑问提出来?八、布置作业。补充习题2、菱 形教学目标 1探索并掌握菱形的概念及其特殊的性质。 2学会识别菱形。3在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。教学重难点重点:菱形特殊特征与性质的探索过程。难点:学生数学说理能力的培养。教学准备矩形纸张、剪刀。教学过程一、复习导入。 1矩形的性质是什么? 2识别矩形

45、的方法有哪些? 3导入课题。 二、引导观察。1将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形? (同桌互相帮助。) 2探索。 请你作该菱形的对角线,探索菱形有哪些特征,并填空。 (从边、对角线入手。) (1)边:都相等; (2)对角线:互相垂直。 (学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。) 问题:你怎样发现的?又是怎样验证的? (可以指名学生到讲台上讲解一下他的结果。) 3概括。 菱形特征1:菱形的四条边都相等。 菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。 引导学生

46、剖析矩形与菱形的区别。 矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。 4请你折折,观察并填空。(引导学生归纳。) (1)菱形是不是中心对称图形?对称中心是_。 (2)是不是轴对称图形?对称轴有几条?_。 5请你思考。 识别一个四边形是不是菱形的方法 (学生的回答不一定很完整,可以多让几个学生补充,逐步完善,最后教师适当的给以点拨。) 菱形的识别方法。 (1)四条边相等的四边形是菱形。 (2)邻边相等的平行四边形是菱形。(3)对角线互相垂直的平行四边形是菱形。三、应用举例。例1 如图,在菱形A

47、BCD中,BAD=2B,试说明ABC是等边三角形。 此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。 四、巩固练习。 在菱形ABCD中,对角线AC与BD相交于点O,已知AB=5,OA=4, OB=3,求这个菱形的周长与两条对角线的长度。(写出解答过程。) (组内互相检查,指出存在问题。) 五、拓展延伸。 用你认为最简洁的方法画一个菱形。(简要叙述一下步骤。) 六、课堂小结。 请你写一写今天学习了哪些内容?(写完后互相检查、补充。)七、布置作业。补充作业3、正方形教学目标 1探索并掌握正方形的概念及其特殊的性质。 2学会识别正方形。3在观察、操作、推理、归纳等探

48、索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。教学重难点重点:正方形特殊特征与性质的探索过程。难点:数学说理能力的培养。教学准备正方形纸张、剪刀。教学过程一、提问。观察正方形有哪些特征?边_角_对角线_ 。 进而导入课题:正方形。二、探索,概括。 1探索。 观察正方形是否轴对称图形?是否中心对称图形? 正方形可以看作为_的菱形; 正方形可以看作为_的矩形。 (让学生探索、讨论,培养学生的合作能力与意识,也可以指名学生讲讲他的发现。) 2概括。 正方形是中心对称图形,也是轴对称图形。 正方形可以看作为有一个角是直角的菱形;正方形可以看作为有一组邻边相等的矩形。三、应用举例

49、。例3 如图,在正方形ABCD中,求ABD、DAC、DOC的度数。(此题要求学生尝试说出每一步的根据是什么,用以培养他们的逻辑思维能力和数学说理能力。)四、巩固练习。 1如果要用给定长度的篱笆围成一个最大面积的四边形区域,那么应 当把这区域围成怎样的四边形?2在下列图中,有多少个正方形?有多少个矩形?五、看谁做的又快又正确?1用纸剪出一个正方形,与你的同伴比一比,看谁又快又正确?六、课堂小结。这节课你有什么收获?学到了什么?有什么疑问提出来?七、布置作业。补充作业123 梯形教学目标 1掌握梯形的概念以及等腰梯形的性质。 2会运用分解梯形为平行四边形与三角形的方法解决一些特殊的图形问题。 3培

50、养学生观察、类比、实验、分析、概括的能力。4培养学生化归的思想和添加辅助线的能力。教学重难点重点:梯形的定义与等腰梯形的性质。难点:添加辅助线把梯形转化为平行四边形和三角形的方法。教学准备硬纸片、剪刀。教学过程一、回忆。 1说出平行四边形的特征与其识别的方法。观察图形。 2学生回答后在图(2)旁边标注“对边平行”,然后指向图(3),同图 (3)是什么四边形?学生回答后板书课题:梯形。二、引导观察。 让学生观察图(3),并跟平行四边形的定义进行对比,引导学生试述梯形的概念,并结合图形说出梯形的底、腰及高。 (板书。)一组对边平行,另一组对边不平行的四边形叫做梯形。(或:只有一组对边平行的四边形叫

51、做梯形。)如图,梯形ABCD中,ADBC,其中AD是上底,BC是下底,AB、CD是腰,EF是高。三、巩固练习。l.如图,梯形ABCD中,ADBC,上底是_下底是_,并作出高。 2小组讨论。 (1)一组对边平行的四边形是梯形吗?(2)一组对边平行且相等的四边形是梯形吗?3特殊梯形。 观察图(4)和图(5)的特点,找出它们与一般梯形的区别,引导得出直角梯形和等腰梯形的概念。由学生试述,教师根据回答情况及时更正并板书。 (板书。)一腰垂直于底的梯形叫做直角梯形。两腰相等的梯形叫做等腰梯形。特殊梯形直角梯形等腰梯形 思考讨论:若上面两个条件同时成立是否是梯形? 4等腰梯形的特征的发现及证明。 等腰梯形

52、是我们常见的图形,利用它的特殊形状可以构造各种建筑模 型,设计各种图案,比如我们常用的梯子。下面观察演示一下等腰梯形具有哪些特征? 让学生先在硬纸片上画一个等腰梯形,再用剪刀剪下来,通过折叠、对比、演示,启发学生从腰、底角、对角线的对称性人手,寻求发现等腰梯形的特征,培养学生观察、分析、概括的能力。 让学生试述结论,教师适时用准备好的等腰梯形纸片进行演示并及时 补充完善结论。 等腰梯形的性质: (1)两腰相等;(2)同一底上两角相等;(3)两条对角线相等;(4)轴对 称图形,对称轴是过两底中点的直线。 (性质(4),学生不易发现,应引导他们联系等腰三角形的轴对称性发现 结论并叙述。) 同学们经

53、过努力,发现了上述结论,这些结论是否成立仅靠观察是不可靠的,需要用所学知识进行严密的推理论证。(教师应引导学生积极探求真理,激发学生的求知欲,由小组讨论、探索证明思路。教师启发点拔,怎样添加辅助线使梯形转化成已熟悉的三角形和平行四边形?通过启发引导学生利用转化思想解决问题。)可让学生广开思路,任其发挥,教师根据学生的推理情况调控教学。对于结论(2)若学生运用转化思想,能找出证明思路,应给予充分的肯定和鼓励。由学生口述教师板书完整的证明过程;若不能的,引导学生做如下探索推证。 如图,梯形ABCD中,ADBC,AB=CD,请你说明B=C。 5思考讨论 我们在探索证明的过程中,得到的解决梯形问题的一

54、般方法是什么?(板书。)梯形转化三角形和平行四边形。四、知识应用。 上面探索发现的结论经过推理都是正确的,今后我们可利用这些结论进行有关计算与证明。 1判断。 (1)一组对边平行的四边形是梯形。 ( ) (2)一组对边平行且相等的四边形是梯形。 ( ) 2填空。 如图,等腰梯形ABCD中,ADBC,B=60,AB=8厘米,则 (1)C=( ),D=( ),CD=( )厘米。(2)若BC=15厘米,则AD=( )厘米,梯形面积S=( )厘米2。 第2题 第3题 3如图,梯形ABCD中,ADBC,B=70,C=40,试说明CD=BC-AD。根据学生解题的实际情况及时反馈纠正。五、课堂小结。 1围绕

55、学习目标提问有关梯形的概念及等腰梯形的性质。2本节课主要的数学方法转化思想。六、布置作业。 1课本第48页练习的第1题。一元一次不等式 第一课时 认识不等式教学目标:认识不等式,能正确理解不等式的概念,弄清不等式的实质;通过对具体问题的分析会列出简单的不等式,用不等式表示简单的数字语言;理解不等式的解的概念,会寻找不等式的解.教学过程:研究问题:世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?那

56、么,究竟李敏的提议对不对呢?是不是真的浪费呢新课探究:分析上面的问题设有x人要进世纪公园,若x30,应该如何买票? 若x30, 则又该如何买票呢?结论:至少要有多少人进公园时,买30张票才合算?概括: = 1 * Arabic 1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号,. = 2 * Arabic 2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解. 3、不等式的分类: 恒不等式:-71+4,a+2a+1. 条件不等式:x+36,a+23,y-3-5.三、基础训练。 例1、用不等式表示: a是正数; b不 是负数; c是非负数; x 的平方是非负数; x的一半小于

57、-1; y与4的和不小于. 注:不等式表示代数式之间的不相等关系,与方程表示相等关系相对应; 研究不等关系列不等式的重点是抓关键词,弄清不等关系。 例2、用不等式表示: a与1的和是正数; x的2倍与y的3倍的差是非负数; x的2倍与1的和大于1;a的一半与4的差的绝对值不小于a. 例3、当x=2时,不等式x-12成立吗?当x=3呢?当x=4呢? 注:检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立。 代入法是检验不等式的解的重要方法。学生练习:课本P56练习1、2、3。实验手册当堂课内练习1、2、3。四、能力拓展 学校组织学生观看电影,

58、某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票。请问他们购买团体票是否比不打折而按45人购票便宜;若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜。解:按实际45人购票需付钱_元,如果按50人购买团体票则需付钱5012元,所以购买团体票便宜。设有x人到电影院观看电影,当x_时,按实际人数买票_张,需付款_元,而按团体票购票需付款_元,如果买团体票合算,那么应有不等式_, 由得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:x12x比较480与12x

59、的大小4812x成立吗?30404142由上表可见,至少要_人时进电影院,购团体票才合算。答: 五、课时小结不等式的定义,不等式的解。 对实际问题中探索得到的不等式的解,不仅要满足数学式子,而且要注意实际意义.六、课时作业:实验手册A组、B组家庭作业:解答题:1用不等式表示:(1)与1的和是正数; (2)的与的的差是非负数;(3)的2倍与1的和大于3; (4)的一半与4的差的绝对值不小于(5)的2倍减去1不小于与3的和; (6)与的平方和是非负数;(7)的2倍加上3的和大于2且小于4; (8)减去5的差的绝对值不大于 2小李和小张决定把省下的零用钱存起来这个月小李存了168元,小张存了85元下

60、个月开始小李每月存16元,小张每月存25元问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解) 3某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案 第二课时 解一元一次不等式(1)不等式的解集教学目标:(1) 使学生掌握不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论