解三角形知识点汇总和典型例题_第1页
解三角形知识点汇总和典型例题_第2页
解三角形知识点汇总和典型例题_第3页
解三角形知识点汇总和典型例题_第4页
解三角形知识点汇总和典型例题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、解三角形的必备知识和典型例题一、知识必备:1直角三角形中各元素间的关系:在ABC中,C90,ABc,ACb,BCa。1)三边之间的关系:a2b2c2。(勾股定理)2)锐角之间的关系:AB90;3)边角之间的关系:(锐角三角函数定义):sinAcosBa,cosAsinBb,tanAa。ccb2斜三角形中各元素间的关系:在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。1)三角形内角和:ABC。2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等abc2R(R为外接圆半径)sinAsinBsinC(3)余弦定理:三角形任何一边的平方等于另两边平方的和减去其与它们夹角的余弦

2、的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。三角形的面积公式:(1)S1aha1bhb1chc(ha、hb、hc分别表示a、b、c上的高);2222)S1absinC1bcsinA1acsinB=abc=2R2sinAsinBsinC2224R4解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中最罕有一个是边)求其他未知元素的问题叫做解三角形广义地,这里所说的元素还能够包括三角形的高、中线、角均分线以及内切圆半径、外接圆半径、面积等等主要种类:1)两类正弦定理解三角形的问题:第1、已知两角和随意一边,求其他的两边及一角.第2、

3、已知两角和其中一边的对角,求其他边角.2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自己的特点。(1)角的变换因为在ABC中,A+B+C=,因此sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。sinABcosC,cosABsinC;2222(2)判断三角形形状时,可利用正余弦定理实现边角转变,一致成边的形式或角的形式.求解三角形应用题的一般步骤:1)分析:分析题意,弄清已知和所求;2)建模:将实诘问题转变成数学识题,写

4、出已知与所求,并画出表示图;3)求解:正确运用正、余弦定理求解;4)检验:检验上述所求能否符合实质意义。二、典例分析题型1:正、余弦定理例1(1)在ABC中,已知A32.00,B81.80,a42.9cm,解三角形;(2)在ABC中,已知a20cm,b28cm,A400,解三角形(角度精准到10,边长精准到1cm)。解:(1)依照三角形内角和定理,C1800(AB)1800(32.0081.80)66.20;依照正弦定理,basinB080.1(cm);sinAsin32.00依照正弦定理,casinC0sinAsin32.0074.1(cm).(2)依照正弦定理,sinBbsinA28sin

5、4000.8999.a20因为00B1800,因此B640,或B1160.当B640时,C1800(AB)1800(400640)760,casinC20sin76030(cm).sinAsin400当B1160时,0(AB)000240asinC20sin24013(cm).C180180(40116),csinA0sin40议论:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的状况;(2)对于解三角形中的复杂运算可使用计算器题型2:三角形面积例2在ABC中,sinAcosA2,AC2,AB3,求tanA的值和ABC的面积。2解法一:先解三角方程,求出角A的值。si

6、nAcosA2cos(A45)2,2cos(A45)1.2又0A180,A45o60o,A105o.tanAtan(45o60o)1323,13sinAsin105sin(4560)sin45cos60cos45sin6026.4SABC1ACABsinA1232463(26)。224解法二:由sinAcosA计算它的对偶关系式sinAcosA的值。sinAcosA22(sinAcosA)2122sinAcosA12Q0oA180o,sinA0,cosA0.另解(sin2A1)2(sinAcosA)212sinAcosA3,2sinAcosA62+得sinA246。得cosA246。sinA2

7、6423。从而tanA42cosA6以下解法略去。议论:本小题主要观察三角恒等变形、三角形面积公式等基本知识,重视数学观察运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?题型3:三角形中的三角恒等变换问题例3在ABC中,a、b、c分别是A、B、C的对边长,已知a、b、c成等比数列,且a2c2=acbc,bsinB求A的大小及的值。c分析:因给出的是a、c之间的等量关系,要求,需找A与三边的关系,故可用余弦定理。由2=bAbac可变形为b2=,再用正弦定理可求bsinB的值。cac解法一:a、b、c成等比数列,b2=ac。又a2c2=acbc,b2+c2a2=bc。

8、在ABC中,由余弦定理得:b2c2a2bc1cosA=2bc=,2bc2A=60。在ABC中,由正弦定理得sinB=bsinA,b=ac,2aA=60,bsinBb2sin603。ac=sin60=c2解法二:在中,ABC由面积公式得1bcsin=1acsin。22b2=ac,A=60,bcsinA=b2sinB。bsinB=sinA=3。c2议论:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。题型4:正、余弦定理判断三角形形状例4在ABC中,若2cosBsinAsinC,则ABC的形状必定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案

9、:C分析:2sinAcosBsinC=sin(AB)=sinAcosB+cosAsinBsin(AB)0,AB另解:角化边议论:本题观察了三角形的基本性质,要求经过观察、分析、判断明确解题思路和变形方向,畅达解题门路题型5:三角形中求值问题例5ABC的三个内角为A、B、C,求当A为何值时,cosA2cosBC获取最大值,并求出这个最大2值。B+CAB+CA分析:由A+B+C=,得2=22,因此有cos2=sin2。B+CA2AAA123cosA+2cos2=cosA+2sin2=12sin2+2sin2=2(sin22)+2;A1时,cosA+2cosB+C3当sin=,即A=获取最大值为。2

10、2322议论:运用三角恒等式简化三角因式最后转变成对于一个角的三角函数的形式,经过三角函数的性质求得结果。题型6:正余弦定理的实质应用例6(2009辽宁卷文,理)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,于水面C处测得B点和D点的仰角均为,AC=。试试究图中B,D间距离与其他哪两点间距离相等,此后求B,D的距离(计算结果精准到,)解:在ABC中,DAC=30,ADC=60DAC=30,因此CD=AC=又BCD=1806060=60,故CB是CAD底边AD的中垂线,因此BD=BA,在ABC中,即AB=因此,BD

11、=故B,D的距离约为。议论:解三角形等内容提到高中来学习,又近来几年加强数形联合思想的观察和对三角变换要求的降低,对三角的综合观察将向三角形中问题伸展,但也不可以太难,只需掌握基本知识、看法,深刻理解其中基本的数量关系即可过关。三、思想总结1解斜三角形的常例思想方法是:(1)已知两角和一边(如A、B、C),由A+B+C=求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,此后利用A+B+C=,求另一角;3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C=求C,再由正弦定理或余弦定理求c边,要注意解可能有

12、多种状况;4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C=,求角C。2三角学中的射影定理:在ABC中,bacosCccosA,3两内角与其正弦值:在ABC中,ABsinAsinB,4解三角形问题可能出现一解、两解或无解的状况,这时应联合“三角形中大边对大角定理及几何作图来帮助理解”。四、课后追踪训练(2010上海文数18.)若的三个内角满足,则()(A)必定是锐角三角形.(B)必定是直角三角形.(C)必定是钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形.分析:由及正弦定理得a:b:c=5:11:13由余弦定理得,因此角C为钝角2.(2010天津理数7)在ABC中,内角A,B

13、,C的对边分别是a,b,c,若,则A=()(A)(B)(C)(D)【答案】A【分析】本题主要观察正弦定理与余弦定理的基本应用,属于中等题。由正弦定理得,因此cosA=,因此A=300【温馨提示】解三角形的基本思路是利用正弦、余弦定理将边化为角运算或将角化为边运算。3.(2010湖北理数)3.在中,a=15,b=10,A=60,则=ABCD【答案】D【分析】依照正弦定理可得解得,又因为,则,故B为锐角,因此,故D正确.4.(2010广东理数)11.已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC=.解:由+=2及+=180知,B=60由正弦定理知,

14、即由知,则,ACBAB+C,5(2009湖南卷文)在锐角中,则的值等于,的取值范围为.分析:设由正弦定理得由锐角得,又,故,6.(2009全国卷理)在中,内角A、B、C的对边长分别为、,已知,且求b分析::本题事实上比较简单,但考生反响不知从何下手.对已知条件(1)左侧是二次的右侧是一次的,学生总感觉用余弦定理不好办理,而对已知条件(2)过多的关注两角和与差的正弦公式,甚至有的学生还想用此刻已经不再考的积化和差,以致找不到打破口而失分.解法:在中则由正弦定理及余弦定理有:(角化边)化简并整理得:.又由已知.解得.7在ABC中,已知A、B、C成等差数列,求tanACAC的值。tan3tan2ta

15、n222分析:因为A、B、C成等差数列,又ABC180,因此AC120,从而AC60,故tanAC3.由两角和的正切公式,得tanAtanC223。221tanAtanC22因此tanAtanC33tanAtanC,2222tanAtanC3tanAtanC3。2222议论:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解,同时联合三角变换公式的逆用。(2009四川卷文)在中,为锐角,角所对的边分别为,且(I)求的值;(II)若,求的值。解(I)为锐角,,II)由(I)知,由得,即又(2010陕西文数17)(本小题满分12分)在ABC中,已知B=45,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在ADC中,AD=10,AC=14,DC=6,由余弦定理得cos=,ADC=120,ADB=60在ABD中,AD=10,B=45,ADB=6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论