




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图所示,CDAB,OE平分AOD,OFOE,D=50,则BOF为( )A35B30C25D202已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其
2、中结论错误的个数是A1B2C3D43如图,已知AOB与A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )A(2,-4)B(1,-4)C(-1,4)D(-4,2)4如图,四边形是的内接四边形,与的延长线交于点,与的延长线交于点,则的度数为( )A38B48C58D685如图,已知A,B是反比例函数y= (k0,x0)图象上的两点,BCx轴,交y轴于点C,动点P从坐标原点O出发,沿OABC(图中“”所示路线)匀速运动,终点为C,过P作PMx轴,垂足为M设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为() ABCD6的半径
3、为5,圆心O到直线l的距离为3,则直线l与的位置关系是A相交B相切C相离D无法确定7已知关于的方程,若,则该方程一定有一个根为( )A-1B0C1D1或-18若3a5b,则a:b()A6:5B5:3C5:8D8:59已知二次函数()的图象如图所示,有下列结论:;.其中,正确结论的个数是( )A1B2C3D410下列四个几何体中,主视图与俯视图不同的几何体是()ABCD11下列方程中,是一元二次方程的是()ABCD12如图,点B,C,D在O上,若BCD130,则BOD的度数是()A50B60C80D100二、填空题(每题4分,共24分)13二次函数的顶点坐标是_14如图,点是矩形的对角线上一点,
4、正方形的顶点在边上,则的值为_ 15烟花厂为春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间是_16如图,在平面直角坐标系中,直线y3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_17如图,ABC的两条中线AD,BE交于点G,EFBC交AD于点F若FG1,则AD_18如图,O的半径为2,AB为O的直径,P为AB延长线上一点,过点P作O的切线,切点为C若PC=2,则BC的长为_三、解答题(共78分)19(8分)如图,在四边形中,对角线,交于点,
5、平分,过点作交的延长线于点,连接(1)求证:四边形是菱形;(2)若,求的长20(8分)如图,点P是上一动点,连接AP,作APC=45,交弦AB于点CAB=6cm小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量下面是小元的探究过程,请补充完整:(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:AP/cm01.002.003.004.005.006.00PC/cm01.212.092.69m2.820AC/cm00.871.572.202.833.616.00经测量m的值是 (保留一位小数)在AP,PC,AC的长度这三个量中,确定的长度是自
6、变量,的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;(3)结合函数图象,解决问题:当ACP为等腰三角形时,AP的长度约为 cm(保留一位小数)21(8分)已知:关于x的方程(1)求证:m取任何值时,方程总有实根(2)若二次函数的图像关于y轴对称.a、求二次函数的解析式b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.22(10分)如图,在ABC中,DEBC,M为B
7、C上一点,AM交DE于N.(1)若AE4,求EC的长;(2)若M为BC的中点,SABC36,求SADN的值23(10分)已知反比例函数为常数,)的图象经过两点(1)求该反比例函数的解析式和的值;(2)当时,求的取值范围;(3)若为直线上的一个动点,当最小时,求点的坐标24(10分)已知线段AC(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC8,BD6,求菱形的边长25(12分)如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD1),连接BD,以BD为边在第一象限内作正方形DBF
8、E,设M为正方形DBFE的中心,直线MA交y轴于点N如果定义:只有一组对角是直角的四边形叫做损矩形(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图中,过点M作MGy轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标26如图,已知二次函数yx24x+3图象与x轴分别交于点B、D,与y轴交于点C,顶点为A,分别连接AB,BC,CD,DA(1)求四边形ABCD的面积;(2)当y0时,自变量x的取值范围是 参考答案一、选择题(每题4分,
9、共48分)1、C【解析】试题分析:CDAB,D=50则BOD=50则DOA=180-50=130则OE平分AOD,EOD=65OFOE,所以BOF=90-65=25选C考点:平行线性质点评:本题难度较低,主要考查学生对平行线性质及角平分线性质的掌握2、A【解析】由抛物线开口方向得到a1,根据抛物线的对称轴为直线x=-1得b1,由抛物线与y轴的交点位置得到c1,则abc1;观察函数图象得到x=-1时,函数有最大值;利用抛物线的对称性可确定抛物线与x轴的另一个交点坐标为(-3,1),则当x=1或x=-3时,函数y的值等于1;观察函数图象得到x=2时,y1,即4a+2b+c1【详解】解:抛物线开口向
10、下,a1,抛物线的对称轴为直线x=-1,b=2a1,abc1,所以正确;抛物线开口向下,对称轴为直线x=-1,当x=-1时,函数有最大值,所以正确;抛物线与x轴的一个交点坐标为(1,1),而对称轴为直线x=-1,抛物线与x轴的另一个交点坐标为(3,1),当x=1或x=-3时,函数y的值都等于1,方程ax2+bx+c=1的解是:x1=1,x2=-3,所以正确;x=2时,y1,4a+2b+c1,所以错误.故选A.【点睛】解此题的关键是能正确观察图形和灵活运用二次函数的性质,能根据图象确定a、b、c的符号,并能根据图象看出当x取特殊值时y的符号3、A【解析】过B作BCy轴于C,过B1作B1Dy轴于D
11、,依据AOB和A1OB1相似,且相似比为1:2,即可得到,再根据BOCB1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4)【详解】解:如图,过B作BCy轴于C,过B1作B1Dy轴于D,点B的坐标为(-1,2),BC=1,OC=2,AOB和A1OB1相似,且相似比为1:2,,BCO=B1DO=90,BOC=B1OD,BOCB1OD,OD=2OC=4,B1D=2BC=2,点B1的坐标为(2,-4),故选:A【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键4、A【分析】根据三角形的外角性质求出,
12、然后根据圆内接四边形的性质和三角形内角和定理计算即可.【详解】解:=故选A【点睛】本题考查了圆周角定理及其推论.5、A【分析】结合点P的运动,将点P的运动路线分成OA、AB、BC三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案【详解】设AOM=,点P运动的速度为a,当点P从点O运动到点A的过程中,S=a2cossint2,由于及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,OPM的高与在B
13、点时相同,故本段图象应该为一段下降的线段;故选A点睛:本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在OA、AB、BC三段位置时三角形OMP的面积计算方式6、A【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交【详解】O的半径为5,圆心O到直线的距离为3,直线l与O的位置关系是相交故选A【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可7、C【分析】由题意将变形为并代入原方程左边,再将方程左边因式分解即可【详解】解:依题意得,原方程化为,即,为原方程的一个根.故选:C【点睛】本题考查一元二次方程解的定义注意掌握
14、方程的解是使方程左右两边成立的未知数的值8、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果【详解】解:3a5b,故选:B【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.9、D【解析】由题意根据函数图象和二次函数的性质可以判断题目中的各个小题的结论是否正确,从而可以解答本题【详解】解:函数图象与x轴有两个交点,故b2-4ac0,所以正确,由图象可得,a0,b0,c0,故abc0,所以正确,当x=-2时,y=4a-2b+c0,故正确,该函数的对称轴为x=1,当x=-1时,y0,当x=3时的函数值与x=-1时的函数值相等,当x=3时,y=9a+3b+c0
15、,故正确,故答案为:故选D.【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答10、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同11、B【解析】根据一元二次方程的定义进行判断即可【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于
16、整式方程,未知数项的最高次数是3,错误故答案为:B【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键12、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得BAD+BCD=180,即可求得BAD的度数,再根据圆周角的性质,即可求得答案【详解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【点睛】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法二、填空题(每题4分,共24分)13、(2,1)【分析】将解析式化为顶点式即可
17、顶点答案.【详解】,二次函数的顶点坐标是(2,1),故答案为:(2,1).【点睛】此题考查二次函数的一般式化为顶点式的方法,顶点式解析式中各字母的意义,正确转化解析式的形式是解题的关键.14、【分析】先证明AHECBA,得到HE与AH的倍数关系,则可知GF与AG的倍数关系,从而求解tanGAF的值【详解】四边形是正方形,AHE=ABC=90,HAE=BCA,AHECBA,即,设,则A,故答案为:【点睛】本题主要考查相似三角形的判定和性质、正方形、矩形的性质、解直角三角形利用参数求解是解答本题的关键15、4s【分析】将二次函数化为顶点式,顶点横坐标即为所求【详解】解:h=,当t=4时,h取得最大
18、值,从点火升空到引爆需要的时间为4s故答案为:4s【点睛】本题考查二次函数的实际应用问题,判断出所求时间为二次函数的顶点坐标的横坐标是关键16、1【解析】作DHx轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),四边形ABCD为正方形,AB=AD,BAD=90,BAO+DAH=90,而BAO+ABO=90,ABO=DAH,在ABO和DAH中 ABODAH,AH=OB=3,DH=OA=1,D点坐标为(1,1),顶点D恰好落在双曲线y= 上,a=11=1故答案是:1.17、1【分析】利用平行线分线段长比例定理得到=1,即AF=FD
19、,所以EF为ADC的中位线,则EF=CD=BD,再利用EFBD得到,所以DG=2FG=2,然后计算FD,从而得到AD的长【详解】解:ABC的两条中线AD,BE交于点G,BDCD,AECE,EFCD,1,即AFFD,EF为ADC的中位线,EFCD,EFBD,EFBD,DG2FG2,FD2+13,AD2FD1故答案为:1【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等也考查了三角形中位线性质和平行线分线段成比例定理18、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得OPC=30,则COP=60,可得OCB是等边三
20、角形,从而得结论【详解】连接OC,PC是O的切线,OCPC,OCP=90,PC=2,OC=2,OP=4,OPC=30,COP=60,OC=OB=2,OCB是等边三角形,BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题(共78分)19、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:,平分,又又,四边形是平行四边形又是菱形(2)解:四边形是
21、菱形,对角线、交于点,在中,在中,为中点点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.20、(1)3.0;AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一);(2)见解析; (3)2.3或4.2【分析】(1)根据题意AC的值分析得出PC的值接近于半径; 由题意AP的长度是自变量,分析函数值即可;(2)利用描点法画出函数图像即可;(3)利用数形结合的思想解决问题即可.【详解】解:(1)AC=2.83可知PC接近于半径3.0; AP的长度是自变量,PC的长
22、度和AC的长度都是这个自变量的函数;(答案不唯一) (2)如图(答案不唯一,和(1)问相对应); (3)结合图像根据AP=PC以及AC=PC进行代入分析可得AP为2.3或4.2【点睛】本题考查函数图像的相关性质,利用描点法画出函数图像以及利用数形结合的思想进行分析求解.21、(1)证明见解析;(2)a、y1=x2-1;b、证明见解析;(3).【解析】(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:m=0,此时方程为一元一次方程,经计算可知一定有实数根;m0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明(2)由于抛物线的图象关于y轴对称,那
23、么抛物线的一次项系数必为0,可据此求出m的值,从而确定函数的解析式;此题可用作差法求解,令y1-y2,然后综合运用完全平方式和非负数的性质进行证明(3)根据的结论,易知y1、y2的交点为(1,0),由于y1y3y2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a表示出y3的函数解析式;已知y3y2,可用作差法求解,令y=y3-y2,可得到y的表达式,由于y3y2,所以y0,可据此求出a的值,即可得到抛物线的解析式【详解】解:(1)分两种情况:当m=0时,原方程可化为3x-3=0,即x=1; m=0时,原方程有实数根;当m0时,原方程为关于x的一元二次方程, =-3(m-1)2
24、-4m(2m-3)=m2-6m+9=(m-3)20, 方程有两个实数根;综上可知:m取任何实数时,方程总有实数根;(2)关于x的二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;3(m-1)=0,即m=1; 抛物线的解析式为:y1=x2-1;y1-y2=x2-1-(2x-2)=(x-1)20,y1y2(当且仅当x=1时,等号成立);(3)由知,当x=1时,y1=y2=0,即y1、y2的图象都经过(1,0); 对应x的同一个值,y1y3y2成立,y3=ax2+bx+c的图象必经过(1,0),又y3=ax2+bx+c经过(-5,0), y3=a(x-1)(x+5)=ax2+4ax-
25、5a;设y=y3-y2=ax2+4ax-5a-(2x-2)=ax2+(4a-2)x+(2-5a);对于x的同一个值,这三个函数对应的函数值y1y3y2成立, y3-y20,y=ax2+(4a-2)x+(2-5a)0;根据y1、y2的图象知:a0, y最小=0(4a-2)2-4a(2-5a)0, (3a-1)20,而(3a-1)20,只有3a-1=0,解得a= , 抛物线的解析式为:【点睛】本题考查二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法,难度较大,22、(1)2(2)8【解析】(1)首先根据DEBC得到ADE和ABC相似,求出AC
26、的长度,然后根据CE=ACAE求出长度;(2)根据ABC的面积求出ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出ADN的面积【详解】解:(1)DEBC ADEABC AE=4 AC=6 EC=ACAE=64=2(2)ABC的面积为36,点M为BC的中点ABM的面积为:362=18ADN和ABM的相似比为=8考点: 相似三角形的判定与性质23、(1);(2)当时, 的取值范围是;(3)点的坐标为【分析】(1)把点A坐标直接代入可求k值,得出函数解析式,再把自变量-6代入解析式可得出n的值(2)根据k的值可确定函数经过的象限,在一、三象限,在每个象限内随的增大而减小,当x=-1时,y
27、=-3,从而可求出y的取值范围(3)作点A关于y=x的对称点,连接,线段,由,B的坐标求出直线的解析式,最后根据两直线解析式求出点M的坐标.【详解】解:()把代入得,反比例函数解析式为;把代入得,解得;(2),图象在一、三象限,在每个象限内随的增大而减小,把代入得,当时, 的取值范围是;(3)作点关于直线的对称点为,则,连接,交直线于点,此时,是的最小值,设直线的解析式为,则,解得,直线的解析式为,由,解得,点的坐标为【点睛】本题是一道关于反比例函数的综合题目,考查的知识点有反比例函数的性质,解二元一次方程组,利用点对称求最短距离等,综合性较强.24、(1)详见解析;(2)1【解析】(1)先画出AC的垂直平分线,垂足为O,然后截取OB=OD即可;(2)根据菱形的性质及勾股定理即可求出边长【详解】解:(1)如图所示,四边形ABCD即为所求作的菱形; (2)AC8,BD6,且四边形A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 随幼儿、觅课程、叙故事-彭州市桂花幼儿园班本课程故事汇报
- 销售培训课程表
- 人教部编版七年级道德与法治下册教学设计:8.1憧憬美好集体
- 2024年秋新人教版八年级上册道德与法治教学课件 6.2 交友的智慧
- 4《公民的基本权利和义务》教学设计-2023-2024学年道德与法治六年级上册统编版
- 一年级语文上册 第六单元 7 青蛙写诗教学设计 新人教版
- 防风防汛安全知识
- 采购合同合同管理咨询重点基础知识点
- 采购合同法律咨询重点基础知识点
- 醒目而又吸引人的护理
- 瓶装液化气送气工培训
- 【MOOC】中医与辨证-暨南大学 中国大学慕课MOOC答案
- 零星维修工程 投标方案(技术方案)
- 风电制氢制甲醇一体化示范制氢制甲醇项目可行性研究报告写作模板-申批立项
- 2024年教科版(广州版)英语五年级上册期中模拟测试卷(无答案)
- 2024年人力资源行业变革:人工智能在招聘中的应用
- 2024-2030年中国玩偶行业发展前景预测及竞争力策略分析报告
- 上门按摩企业标准操作实务白皮书-爱尚往约企业标准开源手册 2024
- 吉利并购沃尔沃绩效分析
- DB11T 1028-2021 民用建筑节能门窗工程技术标准
- GB/T 32151.25-2024温室气体排放核算与报告要求第25部分:食品、烟草及酒、饮料和精制茶企业
评论
0/150
提交评论