山东省郓城县2023学年数学九年级第一学期期末达标测试试题含解析_第1页
山东省郓城县2023学年数学九年级第一学期期末达标测试试题含解析_第2页
山东省郓城县2023学年数学九年级第一学期期末达标测试试题含解析_第3页
山东省郓城县2023学年数学九年级第一学期期末达标测试试题含解析_第4页
山东省郓城县2023学年数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在ABC中,D,E分别是AB,BC边上的点,且DEAC,若,则ACD的面积为( )A64B72C80D962如图,P是等腰直角ABC外一点,把BP绕点B顺时针旋转90到BP,使点P在ABC内,已知APB135,若连接PC,PA:PC1:4,则PA:

2、PB()A1:4B1:5C2:D1:3方程x2x0的解为()Ax1x21Bx1x20Cx10,x21Dx11,x214下列标志中既是轴对称图形又是中心对称图形的是( )ABCD5如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使ABC与DEF相似,则点F应是甲、乙、丙、丁四点中的( )A甲B乙C丙D丁6如图,中,将绕着点旋转至,点的对应点点恰好落在边上若,则的长为( )ABCD7抛物线y =ax2+bx+c图像如图所示,则一次函数y =-bx-4ac+b2与反比例函数在同一坐标系内的图像大致为( )ABCD8下列四个点中,在反比例函数的图象上的是( )A(3,2)B(3,2)C

3、(2,3)D(2,3)9若抛物线yx2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线已知某定弦抛物线的对称轴为直线x2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点( )A(1,0)B(1,8)C(1,1)D(1,6)10如图,正五边形ABCDE内接于O,则ABD的度数为( )A60B72C78D144二、填空题(每小题3分,共24分)11如图,在ABC中,A90,ABAC2,以AB为直径的圆交BC于点D,求图中阴影部分的面积为_12如果两个相似三角形的相似比为1:4,那么它们的面积比为_13如图,过轴上的一点作轴的平行线,与反比例函数的图象交于点,与反比例函

4、数,的图象交于点,若的面积为3,则的值为_14如图是抛物线y=-x2+bx+c的部分图象,若y0,则x的取值范围是_15_16扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线yax24ax5a运动若机器人在运动过程中只触发一次报警,则a的取值范围是_17如图,已知四边形ABCD是菱形,BCx轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆P的半径是,圆心在x轴上移动,若P在运动过

5、程中只与菱形ABCD的一边相切,则点P的横坐标m 的取值范围是_18已知,则_.三、解答题(共66分)19(10分)已知矩形的周长为1(1)当该矩形的面积为200时,求它的边长;(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长20(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B(1)求k和b的值;(2)求OAB的面积21(6分)阅读材料材料1:若一个自然数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.材料2:对于一个三位自然数,将它各个数位上的数字

6、分别2倍后取个位数字,得到三个新的数字,我们对自然数规定一个运算:.例如:是一个三位的“对称数”,其各个数位上的数字分别2倍后取个位数字分别是:2、8、2.则.请解答:(1)一个三位的“对称数”,若,请直接写出的所有值, ;(2)已知两个三位“对称数”,若能被11整数,求的所有值.22(8分)如图,直线y2x与反比例函数y(x0)的图象交于点A(4,n),ABx轴,垂足为B(1)求k的值;(2)点C在AB上,若OCAC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若SOCDSACD,求点D的坐标23(8分)已知正比例函数y=kx与比例函数的图象都过点A(m,1).求:(1)正比

7、例函数的表达式;(2)正比例函数图象与反比例数图象的另一个交点的坐标.24(8分)某养殖场计划用96米的竹篱笆围成如图所示的、三个养殖区域,其中区域是正方形,区域和是矩形,且AGBG31设BG的长为1x米(1)用含x的代数式表示DF ;(1)x为何值时,区域的面积为180平方米;(3)x为何值时,区域的面积最大?最大面积是多少?25(10分)已知关于的方程求证:方程有两个不相等的实数根若方程的一个根是求另一个根及的值26(10分)问题发现:(1)如图1,内接于半径为4的,若,则_;问题探究:(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;解决问题(3)如图3,一块空地由三条直路

8、(线段、AB、)和一条弧形道路围成,点是道路上的一个地铁站口,已知千米,千米,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意得出BE:CE1:4,由DEAC得出DBE和ABC相似,根据相似三角形面积的比等于相似比的平方求出ABC的面积,然后求出ACD的面积【详解】SBDE=4,SCDE=16,SBDE:SCDE=1:4,BDE和C

9、DE的点D到BC的距离相等,DEAC,DBEABC,SDBE:SABC=1:25,SABC=100SACD= SABC - SBDE - SCDE =100-4-16=1故选C【点睛】考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用BDE的面积表示出ABC的面积是解题的关键2、C【分析】连接AP,根据同角的余角相等可得ABPCBP,然后利用“边角边”证明ABP和CBP全等,根据全等三角形对应边相等可得APCP,连接PP,根据旋转的性质可得PBP是等腰直角三角形,然后求出APP是直角,再利用勾股定理用AP表示出PP,又等腰直角三角形的斜

10、边等于直角边的倍,代入整理即可得解【详解】解:如图,连接AP,BP绕点B顺时针旋转90到BP,BPBP,ABP+ABP90,又ABC是等腰直角三角形,ABBC,CBP+ABP90,ABPCBP,在ABP和CBP中,ABPCBP(SAS),APPC,PA:PC1:4,AP4PA,连接PP,则PBP是等腰直角三角形,BPP45,PPPB,APB135,APP1354590,APP是直角三角形,设PAx,则AP4x,PP,PBPB,PA:PB2:,故选:C【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.3、C【解析】通过提取公因式对等式的左边进行因式分解

11、,然后解两个一元一次方程即可【详解】解:x2x0,x(x1)0,x0或x10,x10,x21,故选:C【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式的方法是解题的关键.4、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形故错误;B、不是轴对称图形,也不是中心对称图形故错误;C、是轴对称图形,也是中心对称图形故正确;D、是轴对称图形,不是中心对称图形故错误故选:C【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、A【分析

12、】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置【详解】解:根据题意,ABC的三边之比为要使ABCDEF,则DEF的三边之比也应为经计算只有甲点合适,故选:A【点睛】本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似(2)两边对应成比例且夹角相等的两个三角形相似(3)三边对应成比例的两个三角形相似6、A【分析】先在直角三角形ABC中,求出AB,BC,然后证明ABD为等边三角形,得出BD=AB=2,再根据CD=BC-BD即可得出结果【详解】解:在RtABC中,AC=2,B=60,BC=2AB,BC2=AC2+AB2,4A

13、B2=AC2+AB2,AB=2,BC=4,由旋转得,AD=AB,B=60,ABD为等边三角形,BD=AB=2,CD=BC-BD=4-2=2,故选:A【点睛】此题主要考查了旋转的性质,含30角的直角三角形的性质,勾股定理以及等边三角形的判定与性质,解本题的关键是综合运用基本性质7、D【详解】解:由二次函数y=ax2+bx+c的图象开口向上可知,a0,因为图象与y轴的交点在y轴的负半轴,所以c0,根据函数图象的对称轴x=0,可知b0根据函数图象的顶点在x轴下方,可知4ac-b20有图象可知f(1)0 a+b+c0a0,b0,c0,ac0,4ac-b20,a+b+c0一次函数y =-bx-4ac+b

14、2的图象过一、二、三象限,故可排除B、C;反比例函数的图象在二、四象限,可排除A选项.故选D考点:函数图像性质8、A【分析】根据点在曲线上点的坐标满足方程的关系,将各点坐标代入验算,满足的点即为所求【详解】点(3,2)满足,符合题意,点(3,2)不满足,不符合题意,点(2,3)不满足,不符合题意,点(2,3)不满足,不符合题意故选A9、A【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论【详解】某定弦抛物线的对称轴为直线x=2,该定弦抛物线过点(0,0)、(2,0),该抛物

15、线解析式为y=x(x2)=x22x=(x2)22将此抛物线向左平移2个单位,再向上平移3个单位,得到新抛物线的解析式为y=(x2+2)22+3=x22当x=2时,y=x22=0,得到的新抛物线过点(2,0)故选:A【点睛】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键10、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B

16、.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.二、填空题(每小题3分,共24分)11、1【分析】连接AD,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积【详解】解:连接AD,ABBC2,A90,CB45,BAD45,BDAD,BDAD,由BD,AD组成的两个弓形面积相等,阴影部分的面积就等于ABD的面积,SABDADBD1故答案为:1【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键12、1:1【解析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得【详解】两个相似三角

17、形的相似比为1:4,它们的面积比为1:1故答案是:1:1【点睛】考查对相似三角形性质的理解(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比13、-6.【分析】由ABx轴,得到SAOP=,SBOP= ,根据的面积为3得到,即可求得答案.【详解】ABx轴,SAOP=,SBOP= ,SAOB= SAOP+ SBOP=3,-m+n=6,m-n=-6,故答案为:-6.【点睛】此题考查反比例函数中k的几何意义,由反比例函数图象上的一点作x轴(或y轴)的垂线,再连接此点与原点,所得三角形的面积为,解题中注意k

18、的符号.14、3x1【分析】从抛物线y=-x2+bx+c的部分图象可求抛物线的对称轴,抛物线与x轴的右交点为(1,0),利用对称性可求左交点(x1,0),抛物线开口向下,函数值y0,自变量应在两根之间即可【详解】从抛物线y=-x2+bx+c的部分图象知抛物线的对称轴为x=-1,抛物线与x轴的右交点为(1,0),由抛物线的对称性可求左交点(x1,0)则1-(-1)=-1-x1,x1=-3,左交点(-3,0),抛物线开口向下,由y0,则x的取值范围在两根之间即-3x1故答案为:-3x0时自变量在两根之间15、【分析】直接代入特殊角的三角函数值进行计算即可【详解】故答案为:【点睛】本题考查了特殊角的

19、三角函数值,熟记特殊角的三角函数值是解题的关键16、a【分析】根据题意可以知道抛物线与线段AB有一个交点,根据抛物线对称轴及其与y轴的交点即可求解【详解】解:由题意可知:点A、B坐标分别为(0,1),(6,1),线段AB的解析式为y1机器人沿抛物线yax21ax5a运动抛物线对称轴方程为:x2,机器人在运动过程中只触发一次报警,所以抛物线与线段y1只有一个交点所以抛物线经过点A下方5a1解得a1ax21ax5a,0即36a2+16a0,解得a10(不符合题意,舍去),a2当抛物线恰好经过点B时,即当x6,y1时,36a21a5a1,解得a综上:a的取值范围是a【点睛】本题考查二次函数的应用,关

20、键在于熟悉二次函数的性质,结合图形灵活运用.17、或或或【分析】若P在运动过程中只与菱形ABCD的一边相切,则需要对此过程分四种情况讨论,根据已知条件计算出m的取值范围即可【详解】解:由B点坐标(1,),及原点O是AB的中点可知AB=2,直线AB与x轴的夹角为60,又四边形ABCD是菱形,AD=AB=BC=CD=2,设DC与x轴相交于点H,则OH=4,(1)当P与DC边相切于点E时,连接PE,如图所示,由题意可知PE=,PEDC,PHE=60,PH=2,此时点P坐标为(-6,0),所以此时(2)当P只与AD边相切时,如下图,PD=,PH=1,此时,当P继续向右运动,同时与AD,BC相切时,PH

21、=1,所以此时,当时,P只与AD相切;,(3)当P只与BC边相切时,如下图,P与AD相切于点A时,OP=1,此时m=-1,P与AD相切于点B时,OP=1,此时m=1,当,P只与BC边相切时;,(4)当P只与BC边相切时,如下图,由题意可得OP=2,此时综上所述,点P的横坐标m 的取值范围或或或【点睛】本题考查圆与直线的位置关系,加上动点问题,此题难度较大,解决此题的关键是能够正确分类讨论,并根据已知条件进行计算求解18、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:,设a=2k,b=5k,【点睛】本题考查了比例的性质,属于简单题,设k法是解题关键.三、解答题(共66分)

22、19、(1)矩形的边长为10和2;(2)这个矩形的面积S与其一边长x的关系式是S=-x2+30 x;当矩形的面积取得最大值时,矩形是边长为15的正方形【分析】(1)设矩形的一边长为,则矩形的另一边长为,根据矩形的面积为20列出相应的方程,从而可以求得矩形的边长;(2)根据题意可以得到矩形的面积与一边长的函数关系,然后根据二次函数的性质可以求得矩形的最大面积,并求出矩形面积最大时它的边长【详解】解:(1)设矩形的一边长为,则矩形的另一边长为,根据题意,得,解得,答:矩形的边长为10和2(2)设矩形的一边长为,面积为S,根据题意可得,所以,当矩形的面积最大时,答:这个矩形的面积与其一边长的关系式是

23、S=-x2+30 x,当矩形面积取得最大值时,矩形是边长为15的正方形【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程以及函数关系式,利用二次函数的性质解答20、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k=25=10把x=2,y=5代入y=x+b,得b=3(2)、y=x+3 当y=0时,x=-3, OB=3 S=35=7.5考点:一次函数与反比例函数的综合问题.21、(

24、1)515或565;(2)的值为4,8,96,108,144.【分析】(1)根据“对称数”的定义和可知,这个三位数首尾数字只能是5,然后中间的数字2倍后个位数为2,由此可得B的值.(2)首先表示出这两个三位数,根据能被11整数,分情况讨论、的值即可得出答案.【详解】解:(1)由运算法则可知,这个三位数首尾数字只能是5,中间数字2倍后各位数字为2,中间数字为1或6,则这个三位数为515或565故答案为:515或565;(2)由题意得:,能被11整除,是11的倍数.、在19中取值,.当,时,;当,时,;当,时,;当,时,;当,时,;当,时,;当,时,;当,时,;的值为4,8,96,108,144.

25、【点睛】本题考查新型定义运算问题,理解的运算法则是解决本题的关键.22、(1)32;(2)5;(3)D(10,0)或(,0)【分析】(1)先把A(4,n)代入y=2x,求出n的值,再把A(4,8)代入y=求出k的值即可;(2)设AC=x,则OC=x,BC=8x,由勾股定理得:OC2=OB2+BC2,即可求出x的值;(3)设点D的坐标为(x,0),分两种情况:当x4时,当0 x4时,根据三角形的面积公式列式求解即可.【详解】解(1)直线y=2x与反比例函数y=(k0,x0)的图象交于点A(4,n),n=24=8,A(4,8),k=48=32,反比例函数为y=(2)设AC=x,则OC=x,BC=8

26、x,由勾股定理得:OC2=OB2+BC2,x2=42+(8x)2,x=5,AC=5;(3)设点D的坐标为(x,0)分两种情况:当x4时,如图1,SOCD=SACD,ODBC=ACBD,3x=5(x4),x=10,当0 x4时,如图2,同理得:3x=5(4x),x=,点D的坐标为(10,0)或(,0)【点睛】本题考查了一次函数图像上点的特征,待定系数法求反比例函数解析式,勾股定理,坐标与图形的性质及分类讨论的数学思想,熟练掌握待定系数法及坐标与图形的性质是解答本题的关键23、(-3,-1)【解析】把A的坐标分别代入函数的表达式求解,解由它们组成的方程组即可得解.解:(1)因为y=kx与都过点A(

27、m,1)所以解得所以正正函数表达式为 (2)由得所以它们的另一个交点坐标为(-3,-1).24、(1)4811x;(1)x为1或3;(3)x为1时,区域的面积最大,为140平方米【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以1可得DF的长度;(1)将区域图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)4811x(1)根据题意,得5x(4811x)180,解得x11,x13 答:x为1或3时,区域的面积为180平方米(3)设区域的面积为S,则S5x(4811x)60 x1140 x60(x1)1140600,当x1时,S有最大值,最大值为140答:x为1时,区域的面积最大,为140平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.25、详见解析;,k=1【分析】求出,即可证出结论;设另一根为x1,根据根与系数的关系即可求出结论【详解】解:=k2+80 方程有两个不相等实数根 设另一根为x1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论