2023学年黑龙江省哈尔滨市南岗区数学九上期末达标测试试题含解析_第1页
2023学年黑龙江省哈尔滨市南岗区数学九上期末达标测试试题含解析_第2页
2023学年黑龙江省哈尔滨市南岗区数学九上期末达标测试试题含解析_第3页
2023学年黑龙江省哈尔滨市南岗区数学九上期末达标测试试题含解析_第4页
2023学年黑龙江省哈尔滨市南岗区数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )AE=BF;AEB

2、F;sinBQP=;S四边形ECFG=2SBGEA4B3C2D12如图所示的中心对称图形中,对称中心是( )ABCD3如图,在正方形ABCD中,AB5,点M在CD的边上,且DM2,AEM与ADM关于AM所在的直线对称,将ADM按顺时针方向绕点A旋转90得到ABF,连接EF,则线段EF的长为()ABCD4下列四个函数图象中,当x0时,函数值y随自变量x的增大而减小的是()ABCD5二次函数经过平移后得到二次函数,则平移方法可为( )A向左平移1个单位,向上平移1个单位B向左平移1个单位,向下平移1个单位C向右平移1个单位,向下平移1个单位D向右平移1个单位,向上平移1个单位6已知是关于的一元二次

3、方程的解,则等于( )A1B-2C-1D27如图,ABC的顶点都是正方形网格中的格点,则cosABC等于( )ABCD8二次根式中,的取值范围是( )ABCD9如图是二次函数图象的一部分,则关于的不等式的解集是()ABCD10如图是抛物线y=ax2+bx+c(a0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:a-b+c0;3a+b=0;b2=4a(c-n);一元二次方程ax2+bx+c=n-1有两个不等的实数根其中正确结论的个数是()A1B2C3D4二、填空题(每小题3分,共24分)11如图,在平面直角坐标系中,为线段上任一点,作交线段于,当的长

4、最大时,点的坐标为_12如果3是数和6的比例中项,那么_13如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足 条件时,四边形EFGH是矩形14已知O的直径为10cm,线段OP=5cm,则点P与O的位置关系是_15正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线yx2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是_16抛掷一枚质地均匀的硬币一次,正面朝上的概率是_17在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同

5、,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有_个18在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为,那么盒子内白色兵乓球的个数为_.三、解答题(共66分)19(10分)已知:如图,在四边形ABCD中,ABCD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD(1)求证:ACF=ABD;(2)连接EF,求证:EFCG=EGCB20(6分)如图,在平面直角坐标系xOy中,A(3,4),B(0,1),C(4,0)(1)以点B为中心,把ABC逆时针

6、旋转90,画出旋转后的图形;(2)在(1)中的条件下,点C经过的路径弧的长为 (结果保留);写出点A的坐标为 21(6分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.22(8分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示试根据统计图提供的信息,回答下列问题: (1)张老师抽取的这部分学生中,共有 名男生, 名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是 ; (3)若将

7、不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.23(8分)请用直尺、圆规作图,不写作法,但要保留作图痕迹已知:求作:菱形,使菱形的顶点落在边上24(8分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度25(10分)如图,抛物线与直线恰好交于坐标轴上A、B两点,C为直线AB上方抛物线上一动点,过点C作CDAB于D (1)求抛物线的解析式;(2)线段CD的长度是否存在最大值?若存在,请求出线段CD

8、长度的最大值,并写出此时点C的坐标;若不存在,请说明理由26(10分)如图,外接,点在直径的延长线上,(1)求证:是的切线;(2)若,求的半径参考答案一、选择题(每小题3分,共30分)1、B【解析】解:E,F分别是正方形ABCD边BC,CD的中点,CF=BE,在ABE和BCF中,AB=BC,ABE=BCF,BE=CF,RtABERtBCF(SAS),BAE=CBF,AE=BF,故正确;又BAE+BEA=90,CBF+BEA=90,BGE=90,AEBF,故正确;根据题意得,FP=FC,PFB=BFC,FPB=90CDAB,CFB=ABF,ABF=PFB,QF=QB,令PF=k(k0),则PB=

9、2k在RtBPQ中,设QB=x,x2=(xk)2+4k2,x=,sin=BQP=,故正确;BGE=BCF,GBE=CBF,BGEBCF,BE=BC,BF=BC,BE:BF=1:,BGE的面积:BCF的面积=1:5,S四边形ECFG=4SBGE,故错误故选B点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解2、B【分析】直接利用中心对称图形的性质得出答案【详解】解:如图所示的中心对称图形中,对称中心是O1故选:B【点睛】本题考查中心对称图形,解题关键是熟练掌

10、握中心对称图形的性质.3、A【分析】连接BM先判定FAEMAB(SAS),即可得到EFBM再根据BCCDAB1,CM2,利用勾股定理即可得到,RtBCM中,BM,进而得出EF的长【详解】解:如图,连接BMAEM与ADM关于AM所在的直线对称,AEAD,MADMAEADM按照顺时针方向绕点A旋转90得到ABF,AFAM,FABMADFABMAEFAB+BAEBAE+MAEFAEMABFAEMAB(SAS)EFBM四边形ABCD是正方形,BCCDAB1DM2,CM2在RtBCM中,BM,EF,故选:A【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.4、C【分析】直接

11、根据图象判断,当x0时,从左到右图象是下降的趋势的即为正确选项.【详解】A、当x0时,y随x的增大而增大,错误;B、当x0时,y随x的增大而增大,错误;C、当x0时,y随x的增大而减小,正确;D、当x0时,y随x的增大先减小而后增大,错误;故选:C【点睛】本题主要考查根据函数图象判断增减性,掌握函数的图象和性质是解题的关键.5、D【分析】解答本题可根据二次函数平移的特征,左右平移自变量x加减(左加右减),上下平移y加减(下加上减),据此便能得出答案【详解】由得平移方法可为向右平移1个单位,向上平移1个单位故答案为:D【点睛】本题考查了二次函数的平移问题,掌握次函数的平移特征是解题的关键6、C【

12、分析】方程的解就是能使方程的左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n的方程,就可以求出m+n的值【详解】将x=1代入方程式得1+m+n=0,解得m+n=-1故选:C【点睛】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题7、B【详解】由格点可得ABC所在的直角三角形的两条直角边为2,4,斜边为cosABC=故选B8、A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.【详解】是二次根式,x-30,解得x3.故选A.【点睛】本题考查了二次根式有意义的条件熟记二次根式的被开方数是非负数是解题关键9、D【分析】先根据抛物线平移的规律得到

13、抛物线,通过观察图象可知,它的对称轴以及与轴的交点,利用函数图像的性质可以直接得到答案【详解】解:根据抛物线平移的规律可知,将二次函数向左平移个单位可得抛物线,如图:对称轴为,与轴的交点为,由图像可知关于的不等式的解集为:故选:D【点睛】本题考查了二次函数与不等式,主要利用了二次函数的平移规律、对称性,数形结合的思想,解题关键在于通过平移规律得到新的二次函数图象以及与轴的交点坐标10、C【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y0,于是可对进行判断;利用抛物线的对称轴为直线x=-=1,即b=-2a,则可对进行判断;利用抛物线的顶

14、点的纵坐标为n得到=n,则可对进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对进行判断【详解】抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间当x=-1时,y0,即a-b+c0,所以正确;抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a,所以错误;抛物线的顶点坐标为(1,n),=n,b2=4ac-4an=4a(c-n),所以正确;抛物线与直线y=n有一个公共点,抛物线与直线y=n-1有2个公共点,一元二次方程ax2+bx+c=n-1有两

15、个不相等的实数根,所以正确故选C【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.二、填空题(每小题3分,共24分)11、(3,)【分析】根据勾股定理求出AB,由DEBD,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,利用相似三角形求出x,再根据三角形相似求出点E的横纵坐标即可.【详解】A(4,0),B(0,3),OA=4,OB=3,AB=5,DEBD,BDE=90,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,则BF=EF=DF=,ADF=AOB=90,DFOBADFAOB,解

16、得x=,过点E作EGx轴,EGOB,AEGABO,,EG=,AG=1,OG=OA-AG=4-1=3,E(3,),故答案为:(3,).【点睛】此题考查圆周角定理,相似三角形的判定及性质,勾股定理,本题借助半圆解题使题中的DEBD所成的角确定为圆周角,更容易理解,是解此题的关键.12、【分析】根据比例的基本性质知道,在比例里两个外项的积等于两个内项的积【详解】因为,在比例里两个外项的积等于两个内项的积,所以,6x=33,x=96,x=,故答案为:【点睛】本题考查了比例中项的概念,熟练掌握概念是解题的关键13、ABCD【解析】解:需添加条件ABDC,、分别为四边形中、中点,四边形为平行四边形E、H是

17、AD、AC中点,EHCD,ABDC,EFHGEFEH,四边形EFGH是矩形故答案为:ABDC14、点P在O上【分析】知道圆O的直径为10cm,OP的长,得到OP的长与半径的关系,求出点P与圆的位置关系【详解】因为圆O的直径为10cm,所以圆O的半径为5cm,又知OP=5cm,所以OP等于圆的半径,所以点P在O上故答案为点P在O上【点睛】本题考查了点与圆的位置关系,根据OP的长和圆O的直径,可知OP的长与圆的半径相等,可以确定点P的位置15、2+【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3

18、的长,进而得出结论【详解】点(0,1),四边形,均是正方形,点、和点、分别在抛物线和y轴上,(1,1),(0,2),(,2),(0,2+),点的纵坐标与点相同,点在二次函数的图象上,(,),即,故答案为:2+【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键16、 【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=故答案为【点睛】本题考查了概率公式,概率=发生的情况数所有等可能情况数17、14【分析】先由频率估计出摸到黄球的概率,

19、然后利用概率公式求解即可.【详解】因摸到黄球的频率稳定在0.35左右则摸到黄球的概率为0.35设布袋中黄球的个数为x个由概率公式得解得故答案为:14.【点睛】本题考查了频率估计概率、概率公式,根据频率估计出事件概率是解题关键.18、1【分析】先求出盒子内乒乓球的总个数,然后用总个数减去黄色兵乓球个数得到白色乒乓球的个数【详解】解:盒子内乒乓球的总个数为26(个),白色兵乓球的个数621(个),故答案为:1【点睛】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数三、解答题(共66分)19、(1)证明见解析;(2)证明见解析【解析】试题分析:(1

20、)先根据CG2=GEGD得出,再由CGD=EGC可知GCDGEC,GDC=GCE根据ABCD得出ABD=BDC,故可得出结论;(2)先根据ABD=ACF,BGF=CGE得出BGFCGE,故再由FGE=BGC得出FGEBGC,进而可得出结论试题解析:(1)CG2=GEGD,又CGD=EGC,GCDGEC,GDC=GCEABCD,ABD=BDC,ACF=ABD(2)ABD=ACF,BGF=CGE,BGFCGE,又FGE=BGC,FGEBGC,FECG=EGCB考点:相似三角形的判定与性质20、(1)见解析;(2),(5,2)【分析】(1)利用网格特点和旋转的性质画出A、C的对应点A、C,然后顺次连

21、接即可;(2)先利用勾股定理计算出BC的长,然后利用弧长公式计算;利用(1)中所画图形写出点A的坐标【详解】解:(1)如图,ABC为所作;(2)BC,故点C经过的路径弧的长;点A的坐标为(5,2)故答案为:,(5,2)【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了弧长公式的应用21、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;(2)把A点坐标代入得方程,于是得到结论;(3)分两种情况:当抛物线开口向上或向下时,分

22、别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论【详解】(1)是顶点式,顶点坐标为;(2)抛物线经过点,m=9m +2,解得: ,(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时, ;当m2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时, ;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或 时,抛物线与线段只有一

23、个公共点.【点睛】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想22、(1),(2);(3)(人)【解析】(1)根据条形统计图将男生人数和女生人数分别加起来即可(2)众数:一组数据中出现次数最多的数值,叫众数(3)先计算所抽取的80中优秀的人数有14+13+5+7+2+1+1+1=44人,故七年级名学生中成绩为优秀的学生人数大约是(人)【详解】解:(1)男生人数:1+2+2+4+9+14+5+2+1=40(人)女生人数:1+1+2+3+11+13+7+1+1=40(人)(2)根据条形统计图,分数为时女生人数达到最大,故众数为27(3)(人)【点睛】

24、本题考查了条形统计图,数据的分析,用样本估计总体,解题的关键是读懂统计图表,获取每项的准确数值.23、作图见解析【分析】由在上,结合菱形的性质,可得在的垂直平分线上,利用菱形的四条边相等确定的位置即可得到答案【详解】解:作的垂直平分线交于,以为圆心,为半径作弧,交垂直平分线于,连接,则四边形即为所求【点睛】本题考查的是菱形的判定与性质,同时考查了设计与作图,掌握以上知识是解题的关键24、(1)y=x2+4x(2)(7,)(3)当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是【分析】(1)由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;(2)联立两解析式,可求出交点A的坐标;(3)设小球飞行过程中离坡面距离为z,由(1)中的解析式可得到z和x的函数关系,利用函数性质解答即可【详解】(1)抛物线顶点坐标为(4,8),解得:,二次函数解析式为:y=x2+4x;(2)联立两解析式可得:,解得: 或 ,点A的坐标是(7,);(3)设小球离斜坡的铅垂高度为z,则z=x2+4xx=(x3.5)2+,故当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是【点睛】本题考查了二次函数的应用,解答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论