湖北省武汉市华中学师范大第一附属中学2023学年数学九年级第一学期期末检测试题含解析_第1页
湖北省武汉市华中学师范大第一附属中学2023学年数学九年级第一学期期末检测试题含解析_第2页
湖北省武汉市华中学师范大第一附属中学2023学年数学九年级第一学期期末检测试题含解析_第3页
湖北省武汉市华中学师范大第一附属中学2023学年数学九年级第一学期期末检测试题含解析_第4页
湖北省武汉市华中学师范大第一附属中学2023学年数学九年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1抛物线y2x23的顶点坐标是()A(0,3)B(3,0)C(,0)D(0,)2如图,反比例函数第一象限内的图象经过的顶点,且轴,点,的横坐标分别为1,3,若,则的值为( )A1BCD23如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直

2、线上已知纸板的两条边DF50cm,EF30cm,测得边DF离地面的高度AC1.5m,CD20m,则树高AB为()A12mB13.5mC15mD16.5m4如图,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( )A0B-1C1D25下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )ABCD16已知二次函数y=-x2+2mx+2,当x-2Cm-2Dm-27如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点且CD4,则OE等于()A1B2C3D48如图,线段

3、CD两个端点的坐标分别为C(4,4)、D(6,2),以原点O为位似中心,在第一象限内将线段CD缩小为线段AB,若点B的坐标为(3,1),则点A的坐标为()A(0,3)B(1,2)C(2,2)D(2,1)9已知将二次函数y=x+bx+c的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为y=x-4x-5,则b,c的值为()Ab=1,c=6Bb=1c= -5Cb=1c= -6Db=1,c=510在下列图形中,是中心对称图形而不是轴对称图形的是()A圆B等边三角形C梯形D平行四边形二、填空题(每小题3分,共24分)11如图,四边形中,点在轴上,双曲线过点,交于点,连接若,则的值为_12如图

4、,在中若,则_,_13若2是一元二次方程x2+mx4m0的一个根,则另一个根是_14已知方程有一个根是,则_15在半径为3cm的圆中,长为cm的弧所对的圆心角的度数为_.16如图,直线轴,分别交反比例函数和图象于、两点,若SAOB=2,则的值为_17在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_18如图,已知等边,顶点在双曲线上,点的坐标为(2,0)过作,交双曲线于点,过作交轴于,得到第二个等边过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,则点的坐标为_,的坐标为_三、解答题(共66分)19(10分)如图,在ABC中,AB=AC,以AB为直径的O分别与BC,AC

5、交于点D,E,过点D作O的切线DF,交AC于点F(1)求证:DFAC;(2)若O的半径为4,CDF=15,求阴影部分的面积20(6分)如图,正方形的边长为,分别是,上的动点,且(1)求证:四边形是正方形;(2)求四边形面积的最小值21(6分)阅读下面的材料:小明同学遇到这样一个问题,如图1,AB=AE,ABC=EAD,AD=mAC,点P在线段BC上,ADE=ADP+ACB,求的值小明研究发现,作BAM=AED,交BC于点M,通过构造全等三角形,将线段BC转化为用含AD的式子表示出来,从而求得的值(如图2)(1)小明构造的全等三角形是:_;(2)请你将小明的研究过程补充完整,并求出的值(3)参考

6、小明思考问题的方法,解决问题:如图3,若将原题中“AB=AE”改为“AB=kAE”,“点P在线段BC上”改为“点P在线段BC的延长线上”,其它条件不变,若ACB=2,求:的值(结果请用含,k,m的式子表示)22(8分)如图,AB 为O 的弦,O 的半径为 5,OCAB 于点 D,交O于点 C,且 CD1,(1)求线段 OD 的长度;(2)求弦 AB 的长度23(8分)如图,一次函数y=ax+b(a0)的图象与反比例函数(k0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tanDCO=,过点A作AEx轴于点E,若点C是OE的中点,且点A的横坐标为1,(1)求该反比例函数和一次函数的解

7、析式;(2)连接ED,求ADE的面积24(8分)如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,BFC=BAD=2DFC (1)若DFC=40,求CBF的度数(2)求证: CDDF 25(10分)已知关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根.(2)若此方程的一个根是1,求出方程的另一个根及m的值.26(10分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a

8、的式子表示);(2)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐标,本题得以解决【详解】抛物线y2x23的对称轴是y轴,该抛物线的顶点坐标为(0,3),故选:A【点睛】本题考查了抛物线的顶点坐标,找到抛物线的对称轴是解题的关键2、C【分析】先表示出CD,AD的长,然后在RtACD中利用ACD的正切列方程求解即可【详解】过点作,

9、点、点的横坐标分别为1,3,且,均在反比例函数第一象限内的图象上,CD=2,AD=k-,tanACD=, ,即,故选:C【点睛】本题考查了等腰三角形的性质,解直角三角形,以及反比例函数图像上点的坐标特征,熟练掌握各知识点是解答本题的关键3、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB【详解】DEF=BCD=90,D=D,DEFDCB,DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,由勾股定理求得DE=40cm,BC=15米,AB=AC+BC=1.5+15=16.5(米)故答案为16.5m【点睛】本题考查了

10、相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型4、A【解析】试题分析:因为对称轴x=1且经过点P(3,1)所以抛物线与x轴的另一个交点是(-1,1)代入抛物线解析式y=ax2+bx+c中,得a-b+c=1故选A考点:二次函数的图象5、C【分析】先判断出几个图形中的中心对称图形,再根据概率公式解答即可【详解】解:由图形可得出:第1,2,3个图形都是中心对称图形,从中任意抽取一张,抽到的图案是中心对称图形的概率是:故选:C【点睛】此题主要考查了概率计算公式,熟练掌握中心对称图形的定义和概率的计算公式是解题的关键6、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数

11、的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线 ,抛物线开口向下,当 时,y的值随x值的增大而增大,当时,y的值随x值的增大而增大, ,故选:C【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.7、B【分析】利用菱形的性质以及直角三角形斜边上的中线等于斜边的一半进而得出答案【详解】四边形ABCD是菱形,ABCD4,ACBD,又点E是边AB的中点,OEAB1故选:B【点睛】此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半,得出OE=AB是解题关键8、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出

12、即可【详解】解:在第一象限内将线段CD缩小为线段AB,点B的坐标为(3,1),D(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,C(4,4),端A点的坐标为:(2,2)故选:C【点睛】本题考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.9、C【分析】首先抛物线平移时不改变a的值,其中点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式【详解】解:y=x2-4x-5=x2-4x+4-9=(x-2)2-9,顶点坐标为(2,-9),由点的平移可知:向左平移2个单位,再向上平移3个单位,得(1,-2),则

13、原二次函数y=ax2+bx+c的顶点坐标为(1,-2),平移不改变a的值,a=1,原二次函数y=ax2+bx+c=x2-2,b=1,c=-2故选:C【点睛】此题主要考查了二次函数图象与平移变换,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原二次函数的解析式10、D【解析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D二、填空题(每小题3分,共24分)11、1【分析】过点F作F

14、Cx轴于点C,设点F的坐标为(a,b),从而得出OC=a,FC=b,根据矩形的性质可得AB=FC=b, BF=AC,结合已知条件可得OA=3a,BF=AC=2a,根据点E、F都在反比例函数图象上可得EA=,从而求出BE,然后根据三角形的面积公式即可求出ab的值,从而求出k的值【详解】解:过点F作FCx轴于点C,设点F的坐标为(a,b)OC=a,FC=b四边形FCAB是矩形AB=FC=b, BF=AC,即AC OC=OAAC=a解得:OA=3a,BF=AC=2a点E的横坐标为3a点E、F都在反比例函数的图象上点E的纵坐标,即EA=BE=ABEA=即解得:故答案为:1【点睛】此题考查的是反比例函数

15、与图形的面积问题,掌握矩形的判定及性质、反比例函数比例系数与图形的面积关系和三角形的面积公式是解决此题的关键12、40 100 【分析】根据等边对等角可得,根据三角形的内角和定理可得的度数【详解】解:,故答案为:40,100【点睛】本题考查等边对等角及三角形的内角和定理,掌握等腰三角形的性质是解题的关键13、-4【分析】将x=2代入方程求出m的值,再解一元二次方程求出方程的另一个根【详解】解:将x=2代入方程得,解得,一元二次方程为解方程得:方程得另一个根为-4故答案为:-4 【点睛】本题考查的知识点是解一元二次方程,属于基础题目,比较容易掌握14、1【分析】把方程的根x=1代入即可求解.【详

16、解】把x=1代入得:1-m+n=0m-n=1故答案为:1【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.15、【分析】根据弧长公式求解即可.【详解】 故本题答案为:.【点睛】本题考查了圆的弧长公式,根据已知条件代入计算即可,熟记公式是解题的关键.16、1【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd-ab=1,即可得出答案【详解】设A(a,b),B(c,d),代入得:k1=ab,k2=cd,SAOB=2,cd-ab=1,k2-k1=1,故答案为:1【点睛】本题主要考查了对反比例函数系数的几何意义,反比例函数图象上点的坐标特征

17、,三角形的面积等知识点的理解和掌握,能求出cd-ab=1是解此题的关键17、1【分析】极差是指一组数据中最大数据与最小数据的差极差最大值最小值,根据极差的定义即可解答【详解】解:由题意可知,极差为28121,故答案为:1【点睛】本题考查了极差的定义,解题时牢记定义是关键18、(2,0), (2,0) 【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标【详解】解:如图,作A2Cx轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a)点A2在双曲线上,(2+a)a=,解得a=-1,或a=-1(舍

18、去),OB2=OB1+2B1C=2+2-2=2,点B2的坐标为(2,0);作A3Dx轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b)点A3在双曲线y=(x0)上,(2+b)b=,解得b=-+,或b=-(舍去),OB3=OB2+2B2D=2-2+2=2,点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推,点Bn的坐标为(2,0),故答案为(2,0),(2,0)【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键三、解答题(共66分)19、(1)证明见解析

19、;(2)【分析】(1)连接,易得,由,易得,等量代换得,利用平行线的判定得,由切线的性质得,得出结论;(2)连接,利用(1)的结论得,易得,得出,利用扇形的面积公式和三角形的面积公式得出结论【详解】(1)证明:连接,AB=AC,ABC=ACBODB=ACB,ODACDF是O的切线,DFODDFAC(2)连结OE,DFAC,CDF=15 ABC=ACB=25,BAC=45OA=OE,AOE=90的半径为4,【点睛】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键20、(1)详见解析;(2)四边形面积的最小值

20、为1【分析】(1)由正方形的性质得出.A=B=C=D=90,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明AEHBFECGFDHG,得出EH=FE=GF=GH,AEH=BFE,证出四边形EFGH是菱形,再证出HEF=90,即可得出结论;(2)设四边形EFGH面积为S,AE=xcm,则BE=(8-x)cm,由勾股定理得出S=x2+(8-x)2=2(x-4)2+1,S是x的二次函数,容易得出四边形EFGH面积的最小值.【详解】证明:(1)四边形是正方形,四边形是菱形,四边形是正方形(2)设,则,S四边形EFGH,当时,四边形面积的最小值为1【点睛】本题考查了正方形性质和判定,根据

21、已知条件可证4个三角形全等,由全等三角形性质得到四边形EFGH是正方形;本题还考查了用二次函数来解决面积的最值问题21、(1);(2);(3).【分析】(1)根据已知条件直接猜想得出结果;(2)过点作交于点,易证,再根据结合已知条件得出结果;(3)过点作交于点,过点作,得出,根据相似三角形的性质及已知条件得出,进而求解【详解】(1)解:;(2)过点作交于点在中和,(3)解:过点作交于点在中和,过点作,在中,【点睛】本题考查了三角形全等的性质及判定,相似三角形的判定与性质,解题的关键是熟练掌握这些性质并能灵活运用.22、 (1)OD4;(2)弦 AB 的长是 1【分析】(1)OD=OC-CD,即

22、可得出结果;(2)连接AO,由垂径定理得出AB=2AD,由勾股定理求出AD,即可得出结果【详解】(1)半径是 5,OC5,CD1,ODOCCD514;(2)连接 AO,如图所示:OCAB,AB2AD,根据勾股定理:AD,AB321,因此弦 AB 的长是 1【点睛】本题考查了垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出AD是解决问题(2)的关键23、(1)y=x3,y=;(2)SADE= 2【分析】(1)根据题意求得OE=1,OC=2,RtCOD中,tanDCO= ,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),运用待定系数法即可求得反比例函数与一次函数的解析式;(2

23、)求得两个三角形的面积,然后根据SADE=SACE+SDCE即可求得【详解】(1)AEx轴于点E,点C是OE的中点,且点A的横坐标为1,OE=1,OC=2,RtCOD中,tanDCO=,OD=3,A(1,3),D(0,3),C(2,0),直线y=ax+b(a0)与x轴、y轴分别交于C、D两点, ,解得 ,一次函数的解析式为y=x3,把点A的坐标(1,3)代入,可得3= ,解得k=12,反比例函数解析式为y=;(2)SADE=SACE+SDCE=ECAE+ECOD=23+=224、(1)50;(2)见解析【分析】(1)根据圆周角定理及三角形的外角,等腰三角形的知识进行角度的换算即可得;(2)根据

24、圆的内接四边形对角互补的性质进行角度计算即可证明【详解】解:(1)BAD=BFC,BAD=BAC+CAD, BFC=BAC+ABF,CAD=ABF又CAD=CBD,ABF=CBDABD=FBC,又,(2)令,则,四边形是圆的内接四边形,即,又,即【点睛】本题主要考查圆的性质与三角形性质综合问题,难度适中,解题的关键是能够灵活运用圆及三角形的性质进行角度的运算25、(1)证明见解析;(2),2;【分析】(1)要证明方程有两个不相等的实数根,即证明1即可;(2)将x=1代入方程,求出m的值,进而得出方程的解【详解】(1)证明:而1,1方程总有两个不相等的实数根;(2)解:方程的一个根是1,1-(m+2)+2m-1=1,解得:m=2,原方程为:,解得:即m的值为2,方程的另一个根是2方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论