广东省深圳市平冈中学2023学年数学九上期末质量检测试题含解析_第1页
广东省深圳市平冈中学2023学年数学九上期末质量检测试题含解析_第2页
广东省深圳市平冈中学2023学年数学九上期末质量检测试题含解析_第3页
广东省深圳市平冈中学2023学年数学九上期末质量检测试题含解析_第4页
广东省深圳市平冈中学2023学年数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1如图,已知直线yx与双曲线y(k0)交于A、B两点,A点的横

2、坐标为3,则下列结论:k6;A点与B点关于原点O中心对称;关于x的不等式0的解集为x3或0 x3;若双曲线y(k0)上有一点C的纵坐标为6,则AOC的面积为8,其中正确结论的个数()A4个B3个C2个D1个2已知点O是ABC的外心,作正方形OCDE,下列说法:点O是AEB的外心;点O是ADC的外心;点O是BCE的外心;点O是ADB的外心.其中一定不成立的说法是()ABCD3如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A(4,4)B(3,3)C(3,1)D(4,1)4己知a、b、c

3、均不为0,且,若,则k=( )A-1B0C2D35下列图案中是中心对称图形的有()A1个B2个C3个D4个6与y=2(x1)2+3形状相同的抛物线解析式为( )Ay=1+x2By=(2x+1)2Cy=(x1)2Dy=2x27如图,平行于x轴的直线AC分别交函数 y=x(x0)与 y= x(x0)的图象于 B,C两点,过点C作y轴的平行线交y=x(x0)的图象于点D,直线DEAC交 y=x(x0)的图象于点E,则=( )AB1CD3 8已知点,都在反比例函数的图像上,则( )ABCD9如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为

4、,则图中阴影部分的面积为()ABCD10如图,AB为O的直径,CD为O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若BAD=56,则C的度数为()A56B55C35D34二、填空题(每小题3分,共24分)11已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为 cm(结果保留)12如图,PA,PB分别切O于点A,B若P100,则ACB的大小为_(度)13已知非负数a、b、c满足a+b=2,则d的取值范围为_14如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保

5、持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边,测得边DF离地面的高度,则树AB的高度为_cm. 15已知二次函数的部分图象如图所示,则关于的一元二次方程的解为_16在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_17如图,在O中,弦AC=2,点B是圆上一点,且ABC=45,则O的半径R= 18如图,点O是ABC的内切圆的圆心,若A100,则BOC为_三、解答题(共66分)19(10分)问题探究:(1)如图所示是一个半径为,高为4的

6、圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程(3)如图所示,在的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程20(6分)解下列方程(1)(2)21(6分)如图,已知抛物线经过点、,且与轴交于点,抛物线的顶点为,连接,点是线段上的一

7、个动点(不与、)重合.(1)求抛物线的解析式,并写出顶点的坐标;(2)过点作轴于点,求面积的最大值及取得最大值时点的坐标;(3)在(2)的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,为顶点的四边形是平行四边若存在,请直接写出点的坐标:若不存在,请说明理由.22(8分)如图,点是二次函数图像上的任意一点,点在轴上.(1)以点为圆心,长为半径作.直线经过点且与轴平行,判断与直线的位置关系,并说明理由.若与轴相切,求出点坐标;(2)、是这条抛物线上的三点,若线段、的长满足,则称是、的和谐点,记做.已知、的横坐标分别是,直接写出的坐标_.23(8分)如图,为的直径,

8、、为上两点,垂足为直线交的延长线于点,连接(1)判断与的位置关系,并说明理由;(2)求证:24(8分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.25(10分)某高速公路建设中,需要确定隧道AB的长度已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60和45(即DCA60,DCB45)求隧道AB的长(结果保留根号)26(10分)一元二次方程的一个根为,求的值及方程另一根参考答案一、选择题(每小题3分,共30分

9、)1、A【分析】由A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;根据直线和双曲线的性质即可判断;结合图象,即可求得关于x的不等式0的解集;过点C作CDx轴于点D,过点A作AE轴于点E,可得SAOC=SOCD+S梯形AEDC-SAOE=S梯形AEDC,由点C的纵坐标为6,可求得点C的坐标,继而求得答案【详解】直线yx与双曲线y(k0)交于A、B两点,A点的横坐标为3,点A的纵坐标为:y32,点A(3,2),k326,故正确;直线yx与双曲线y(k0)是中心对称图形,A点与B点关于原点O中心对称,故正确;直线yx与双曲线y(k0)交于A、B两点,B(3,2),关于x的不等式0的解

10、集为:x3或0 x3,故正确;过点C作CDx轴于点D,过点A作AEx轴于点E,点C的纵坐标为6,把y6代入y得:x1,点C(1,6),SAOCSOCD+S梯形AEDCSAOES梯形AEDC(2+6)(31)8,故正确;故选:A【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识此题难度较大,综合性很强,注意掌握数形结合思想的应用2、A【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OCOD,求出OA=OB=OC=OEOD,再逐个判断即可【详解】解:如图,连接OB、OD、OA,O为锐角三角形ABC的外心,OAOCOB,四边形OCDE为正方形

11、,OAOCOD,OAOBOCOEOD,OAOCOD,即O不是ADC的外心,OAOEOB,即O是AEB的外心,OBOCOE,即O是BCE的外心,OBOAOD,即O不是ABD的外心,故选:A【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.3、A【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标【详解】以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,A点与C点是对应点,C点的对应点A的坐标为(2,2),位似比为1:2,点C的坐标为:(4,4)故选A【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系

12、是解题关键4、D【解析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【详解】, 三式相加得, k=3. 故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.5、B【解析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案【详解】解:第一个不是中心对称图形;第二个是中心对称图形;第三个不是中心对称图形;第四个是中心对称图形;故中心对称图形的有2个故选B【点睛】此题主要考查了中心对称图形,关键是找出对称中心6、D【分析】抛物线的形状只是与a有关

13、,a相等,形状就相同【详解】y=1(x1)1+3中,a=1故选D【点睛】本题考查了抛物线的形状与a的关系,比较简单7、D【分析】设点A的纵坐标为b, 可得点B的坐标为(,b), 同理可得点C的坐标为(b,b),D点坐标(,3b),E点坐标(,3b),可得的值.【详解】解:设点A的纵坐标为b, 因为点B在的图象上, 所以其横坐标满足=b, 根据图象可知点B的坐标为(,b), 同理可得点C的坐标为(,b), 所以点D的横坐标为,因为点D在的图象上, 故可得y=3b,所以点E的纵坐标为3b,因为点E在的图象上, =3b,因为点E在第一象限, 可得E点坐标为(,3b),故DE=,AB=所以=故选D.【

14、点睛】本题主要考查二次函数的图象与性质.8、D【解析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【详解】k0,反比例函数在二、四象限,y值随着x的增大而减小,又,在反比例函数的图像上,,20,点在第二象限,故,故选D.【点睛】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.9、D【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,E

15、O,B,E是半圆弧的三等分点,EOAEOBBOD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6,SABCBCAC6,BOE和ABE同底等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.10、D【分析】利用直径所对的圆周角是可求得的度数,根据同弧所对的的圆周角相等可得C的度数.【详解】解:AB为O的直径,点D为O上的一个点 故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.二、填空题(每小题3分,共

16、24分)11、8【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式解:方法一:先求出正六边形的每一个内角=120,所得到的三条弧的长度之和=3=8(cm);方法二:先求出正六边形的每一个外角为60,得正六边形的每一个内角120,每条弧的度数为120,三条弧可拼成一整圆,其三条弧的长度之和为8cm故答案为8考点:弧长的计算;正多边形和圆12、1【分析】首先连接OA,OB,由PA、PB分别切O于点A、B,根据切线的性质可得:OAPA,OBPB,然后由四边形的内角和等于360,求得AOB的度数,又由圆周角定理,即可求得答案【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OAP

17、A,OBPB,即PAOPBO90,AOB360PAOPPBO360901009080,故答案为:1【点睛】此题考查了切线的性质以及圆周角定理解题的关键是掌握辅助线的作法,熟练掌握切线的性质13、5d1【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可【详解】a+b=2,c-a=3,b=2-a,c=3+a,b,c都是非负数,解不等式得,a2,解不等式得,a-3,-3a2,又a是非负数,0a2,d-a2-b-c=0d=a2+b+c=a2+(2-a)+3+a,=a2+5,对称轴为直线a=0,a=0时,最小值=5,a=2时,最大值=22+5

18、=1,5d1故答案为:5d1【点睛】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式14、420【分析】先判定DEF和DBC相似,然后根据相似三角形对应边成比例列式求出BC的长,再加上AC即可得解【详解】解:在DEF和DBC中,D=D,DEF=DCB,DEFDCB,解得BC=300cm,AB=AC+BC=120+300=420m,即树高420m故答案为:420.【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出DEF和DBC相似是解题的关键15、x1= 1, x2=1【分析】根据抛物线的轴

19、对称性以及对称轴的位置,可得抛物线与x轴的另一个交点的横坐标,进而即可求解【详解】二次函数的部分图象与x轴的交点的横坐标为1,对称轴为:直线x=1,抛物线与x轴的另一个交点的横坐标为-1,的解为:x1= 1,x2=1故答案是:x1= 1,x2=1【点睛】本题主要考查二次函数图象的轴对称性以及二次函数与一元二次方程的关系,根据抛物线的轴对称性,得到抛物线与x轴另一个交点的横坐标,是解题的关键16、1【分析】由于摸到红球的频率稳定在25%,由此可以确定摸到红球的概率为25%,而m个小球中红球只有4个,由此即可求出m【详解】摸到红球的频率稳定在25%,摸到红球的概率为25%,而m个小球中红球只有4个

20、,推算m大约是425%=1故答案为:1【点睛】本题考查了利用频率估计概率,其中解题时首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题17、【分析】通过ABC=45,可得出AOC=90,根据OA=OC就可以结合勾股定理求出AC的长了【详解】ABC=45,AOC=90,OA1+OC1=AC1 OA1+OA1=(1)1OA=故O的半径为故答案为:18、140【分析】根据内心的定义可知OB、OC为ABC和ACB的角平分线,根据三角形内角和定理可求出OBC+OCB的度数,进而可求出BOC的度数.【详解】点O是ABC的内切圆的圆心,OB、OC为ABC和ACB的角平分线,OBC=ABC,OCB=

21、ACB,A=100,ABC+ACB=180-100=80,OBC+OCB=(ABC+ACB)=40,BOC=180-40=140.故答案为:140【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.三、解答题(共66分)19、(1)蚂蚁爬行的最短路程为1; (2)最短路程为;(3)蚂蚁爬行的最短距离为【分析】(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;(2)蚂蚁爬行的最短路程为圆锥展开图中的AA的连线,可求得PAA是等边三角形,则AA=PA=4;(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA

22、的距离【详解】(1)由题意可知:在 中,即蚂蚁爬行的最短路程为1 (2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径, 则由题意得:即是等边三角形最短路程为 (3)如图所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程 在RtACP中,P=60,PAC=30PC=PA=4=2 AC=蚂蚁爬行的最短距离为 【点睛】本题考查了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质,掌握相关公式和性质定理是本题的解题关键20、(1);(2).【分析】(1)方程变形后,利用因式分解法即可求解;(2)方程变形后,利用因式分解法即

23、可求解【详解】(1)方程变形得:,分解因式得:,即:或,;(2)方程变形得:,分解因式得:,即:或,【点睛】本题考查了一元二次方程的解法,灵活运用因式分解法是解决本题的关键21、(1),D的坐标为(1,4);(2)当m=时 BPE的面积取得最大值为,P的坐标是(,3);(3)存在,M点的坐标为;【分析】(1)先根据抛物线经过A(-1,0)B(3,0)两点,分别求出a、b的值,再代入抛物线即可求出二次函数的解析式并得出顶点的坐标;(2)先设出BD解析式y=kx+b,再把B、D两点坐标代入求出k、b的值,得出BD解析式,再根据面积公式即可求出最大值以及点的坐标;(3)根据题意利用平行四边形的性质进

24、行分析求值,注意分类讨论.【详解】解:(1)二次函数y=ax2+bx+3经过点A(1,0)、B(3,0) 所以二次函数的解析式为: D的坐标为(1,4)(2)设BD的解析式为y=kx+b过点B(3,0),D(1,4)解得BD的解析式为y = -2x+6 设P(m,)PEy轴于点E BPE的PE边上的高h=SBPE=PEh=m()=a=-10 当m=时 BPE的面积取得最大值为当m=时,y=-2+6=3P的坐标是(,3)(3)存在这样的点,使得以点,为顶点的四边形是平行四边形,当点,为顶点的四边形是平行四边形,可得BM平行于PN,则有N点纵坐标等于P点纵坐标,把y=3代入求出N的坐标(0,3)或

25、(2,3),当N的坐标(0,3)或(2,3)时,根据平行四边形性质求得M点的坐标为;,;当BP平行于MN时,根据平行四边形性质求得M点的坐标为;.M点的坐标为:;.【点睛】本题考查运用待定系数法求得函数的解析式,根据二次函数的解析式求得函数的最值,平行四边形的性质进行计算,注意数形结合的思想22、(1)与直线相切.理由见解析;或;(2)或.【分析】(1)作直线的垂线,利用两点之间的距离公式及二次函数图象上点的特征证明线段相等即可;利用两点之间的距离公式及二次函数图象上点的特征构建方程即可求得答案.(2)利用两点之间的距离公式分别求得各线段的长,根据“和谐点”的定义及二次函数图象上点的特征构建方程即可求得答案.【详解】(1)与直线相切.如图,过作直线,垂足为,设.则,即:与直线相切.当与轴相切时 ,即:代入化简得:或.解得:,.或.(2)已知、的横坐标分别是,代入二次函数的解析式得:,设,点B的坐标为,依题意得:,即,即:,(不合题意,舍去)或,把,代入得:直接开平方解得:,的坐标为:或【点睛】本题主要考查了两点之间的距离公式二次函数的性质,利用两点之间的距离公式及二次函数图象上点的特征构建方程是解题的关键.23、(1)EF与O相切,理由见解析;(2)证明见解析【分析】(1)连接OC,由题意可得OCA=FAC=OAC,可得OCAF,可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论