版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在平面直角坐标系中,菱形的顶点与原点重合,顶点落在轴的正半轴上,对角线、交于点,点、恰好都在反比例函数的图象上,则的值为()ABC2D2如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD8,以CD为直径作P交AB
2、于点E,F动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A一直不变B一直变大C先变小再变大D先变大再变小3下列倡导节约的图案中,是轴对称图形的是( )ABCD4如图,AB是O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交O于点C,连结AC、BC、OB、OC若ABC=65,则BOC的度数是( )A50B65C100D1305如图,一次函数yax+a和二次函数yax2的大致图象在同一直角坐标系中可能的是()ABCD6-4的相反数是( )ABC4D-47如图,正方形中,为的中点,的垂直平分线分别交,及的延长线于点,连接,连接并延长交于点,则下列结论中:; ;正确的结论的个数为
3、( )A3B4C5D68如图,ABCD的对角线AC,BD交于点O,CE平分BCD交AB于点E,交BD于点F,且ABC60,AB2BC,连接OE下列结论:EOAC;SAOD4SOCF;AC:BD:7;FB2OFDF其中正确的是( )ABCD9某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)10关于二次函数,下列说法正确的是( )A图像与轴的交点坐标为B图像的对称轴在轴的右侧C当时,的值随值的增大而减小D的最小值为-3二、填空题(每小题3分,共24分)11如图,在矩形ABCD中,E是AD边的中点,BEAC于点F,连接DF,分析下列
4、五个结论:AEFCAB;CF2AF;DFDC;S四边形CDEFSABF,其中正确的结论有_个12已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_。13已知是关于的方程的一个根,则_.14已知和是方程的两个实数根,则_15抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_16如图,已知D是等边ABC边AB上的一点,现将ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上如果AD:DB=1:2,则CE:CF的值为_17一圆锥的侧面积为 ,底面半径为3,则该圆锥的母线长为_18如图,在正方形ABCD中,AB=4,点M在CD的边上,且DM=1,AEM与ADM关于
5、AM所在的直线对称,将ADM按顺时针方向绕点A旋转90得到ABF,连接EF,则线段EF的长为_三、解答题(共66分)19(10分)已知抛物线的对称轴是直线,与轴相交于,两点(点在点右侧),与轴交于点.(1)求抛物线的解析式和,两点的坐标;(2)如图,若点是抛物线上、两点之间的一个动点(不与、重合),是否存在点,使四边形的面积最大?若存在,求点的坐标及四边形面积的最大值;若不存在,请说明理由.20(6分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如
6、果不是,请说明理由.21(6分)如图,在ABC中,ACBC,ACB120,点D是AB边上一点,连接CD,以CD为边作等边CDE(1)如图1,若CDB45,AB6,求等边CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DGAC于点G求证:CFDF;如图3,将CFD沿CF翻折得CF,连接B,直接写出的最小值22(8分)在平面直角坐标系中,己知,点从点开始沿边向点以的速度移动;点从点开始沿边内点以的速度移动如果、同时出发,用表示移动的时间(1)用含的代数式表示:线段_;_;(2)当为何值时,四边形的面积为(3)当与相似时,求出的值23(8分)某
7、服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?24(8分)已知抛物线y=x2+bx+c的图像过A(1,0)、B(3,0)两点求抛物线的解析式和顶点坐标.25(10分)二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹其中定点叫抛物线的焦点,定直线叫抛物线的准线抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦
8、点是_;将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是例如,抛物线的焦点是;抛物线的焦点是_根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为;求其图象的焦点的坐标;求过点且与轴平行的直线与二次函数图象交点的坐标26(10分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB(1)求证:AB是O的切线;(2)若ACD=45,OC=2,求弦CD的长参考答案一、选择题(每小题3分,共30分)1、A【解析】利用菱形的性质, 根据正切定义即可得到答案.【详解】解:设,点为菱形对角线的交点,把代入得,四边形
9、为菱形,解得,在中,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,解题关键在于运用菱形的性质2、D【解析】如图,连接OP,PF,作PHAB于H点P的运动轨迹是以O为圆心、OP为半径的O,易知EF2FH2,观察图形可知PH的值由大变小再变大,推出EF的值由小变大再变小【详解】如图,连接OP,PF,作PHAB于HCD8,COD90,OPCD4,点P的运动轨迹是以O为圆心OP为半径的O,PHEF,EHFH,EF2FH2,观察图形可知PH的值由大变小再变大,EF的值由小变大再变小,故选:D【点睛】此题主要考查圆与几何综合,解题的关键是熟知勾股定理及直角坐标系的特点.3、C【分析】如果一个图形沿
10、一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误故选C【点睛】此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4、C【分析】直接根据题意得出AB=AC,进而得出A=50,再利用圆周角定理得出BOC=100【详解】解:由题意可得:AB=AC,ABC=65,ACB=65,A=50,BOC=100,故选:C【点睛】本题考查圆心角、弧、弦的关系5、B【分析】根据a的符号分类,当a0时,
11、在A、B中判断一次函数的图象是否相符;当a0时,在C、D中判断一次函数的图象是否相符【详解】解:当a0时,二次函数yax2的开口向上,一次函数yax+a的图象经过第一、二、三象限,A错误,B正确;当a0时,二次函数yax2的开口向下,一次函数yax+a的图象经过第二、三、四象限,C错误,D错误故选:B【点睛】此题主要考查了二次函数与一次函数的图象,利用二次函数的图象和一次函数的图象的特点求解6、C【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.7、B【分析】作辅助线,构建三角形全等,证明ADEGKF,则FG=AE,可
12、得FG=2AO;设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明ADEHOA,得,于是可求BH及HE的值,可作出判断;分别表示出OD、OC,根据勾股定理逆定理可以判断;证明HEA=AED=ODE,OEDE,则DOEHEA,OD与HE不平行;由可得,根据ARCD,得,则;证明HAEODE,可得,等量代换可得OE2=AHDE;分别计算HC、OG、BH的长,可得结论【详解】解:如图,过G作GKAD于K,GKF=90,四边形ABCD是正方形,ADE=90,AD=AB=GK,ADE=GKF,AEFH,AOF=OAF+AFO=90,OAF+AED=90,AFO=AED,ADEGKF,
13、FG=AE,FH是AE的中垂线,AE=2AO,FG=2AO,故正确;设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,易得ADEHOA,RtAHO中,由勾股定理得:AH= ,BH=AH-AB= ,HE=AH= ,HE=5BH;故正确;,OC与OD不垂直,故错误;FH是AE的中垂线,AH=EH,HAE=HEA,ABCD,HAE=AED,RtADE中,O是AE的中点,OD=AE=OE,ODE=AED,HEA=AED=ODE,当DOE=HEA时,ODHE,但AEAD,即AECD,OEDE,即DOEHEA,OD与HE不平行,故不正确;由知BH=,延长CM、BA交于R,RACE,ARO=
14、ECO,AO=EO,ROA=COE,AROECO,AR=CE,ARCD,故正确;由知:HAE=AEH=OED=ODE,HAEODE,AE=2OE,OD=OE,OE2OE=AHDE,2OE2=AHDE,故正确;由知:HC= ,AE=2AO=OH= ,tanEAD= ,FG=AE ,OG+BH= ,OG+BHHC,故不正确;综上所述,本题正确的有;,共4个,故选:B【点睛】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点8、B【分析】正确只要证明EC=EA=BC,推出ACB=90,再利用三角形中位线定理即可判断错
15、误想办法证明BF=2OF,推出SBOC=3SOCF即可判断正确设BC=BE=EC=a,求出AC,BD即可判断正确求出BF,OF,DF(用a表示),通过计算证明即可【详解】解:四边形ABCD是平行四边形,CDAB,OD=OB,OA=OC,DCB+ABC=180,ABC=60,DCB=120,EC平分DCB,ECB=DCB=60,EBC=BCE=CEB=60,ECB是等边三角形,EB=BC,AB=2BC,EA=EB=EC,ACB=90,OA=OC,EA=EB, OEBC,AOE=ACB=90,EOAC,故正确,OEBC,OEFBCF, ,OF=OB,SAOD=SBOC=3SOCF,故错误,设BC=
16、BE=EC=a,则AB=2a,AC=a,OD=OB=a,BD=a,AC:BD=a:a=:7,故正确,OF=OB=a,BF=a,BF2=a2,OFDF=a a2,BF2=OFDF,故正确,故选:B【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题9、A【分析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-23=-6,而2(-3)
17、=-6,(-3)(-3)=9,23=6,-46=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k10、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题详解:y=2x2+4x-1=2(x+1)2-3,当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D点睛:本题考查二
18、次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答二、填空题(每小题3分,共24分)11、1【分析】四边形ABCD是矩形,BEAC,则ABCAFB90,又BAFCAB,于是AEFCAB,故正确;由AEADBC,又ADBC,所以,故正确;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BMDEBC,得到CNNF,根据线段的垂直平分线的性质可得结论,故正确;根据AEFCBF得到,求出SAEFSABF,SABFS矩形ABCDS四边形CDEFSACDSAEFS矩形ABCDS矩形ABCDS矩形ABCD,即可得到S四边形CDEFSABF,故正确【详解】解:过D作D
19、MBE交AC于N,四边形ABCD是矩形,ADBC,ABC90,ADBC,BEAC于点F,EACACB,ABCAFE90,AEFCAB,故正确;ADBC,AEFCBF,AEADBC,CF2AF,故正确,DEBM,BEDM,四边形BMDE是平行四边形,BMDEBC,BMCM,CNNF,BEAC于点F,DMBE,DNCF,DFDC,故正确;AEFCBF,SAEFSABF,SABFS矩形ABCDSAEFS矩形ABCD,又S四边形CDEFSACDSAEFS矩形ABCDS矩形ABCDS矩形ABCD,S四边形CDEFSABF,故正确;故答案为:1【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积
20、的计算,正确的作出辅助线,根据相似三角形表示出图形面积之间关系是解题的关键12、-1【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案【详解】解:点A(m,1)与点B(3,n)关于原点对称,m=-3,n=-1,m+n=-1,故答案为:-1【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律13、2024【分析】把代入方程得出的值,再整体代入中即可求解.【详解】把代入方程得:,即故填:2024.【点睛】本题考查一元二次方程的解法,运用整体代入法是解题的关键.14、1【分析】根据根与系数的关系可得出x1+x2=-3、x1x2=-1
21、,将其代入x12+x22=(x1+x2)2-2x1x2中即可求出结论【详解】解:x1,x2是方程的两个实数根,x1+x2=-3,x1x2=-1,x12+x22=(x1+x2)2-2x1x2=(-3)2-2(-1)=1故答案为:1【点睛】本题考查了一元二次方程的根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键15、【分析】根据图象的平移规律,可得答案【详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,故答案为:【点睛】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减16、【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角
22、对应相等的两三角形相似得出AEDBDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,ABC是等边三角形,AB=BC=AC, A=B=ACB=60,由折叠可得,EDF=ACB=60,DE=CE,DF=CFBDE=BDF+FDE=A+AED,BDF+60=AED+60,BDF=AED,A=B,AEDBDF, ,设AD=x,AD:DB=1:2,则BD=2x,AC=BC=3x,.故答案为: .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.17、2【分析】圆锥的侧面积
23、=底面周长母线长1【详解】解:底面半径为3,则底面周长=6,设圆锥的母线长为x,圆锥的侧面积=6x=12解得:x=2,故答案为218、2【分析】连接BM先判定FAEMAB(SAS),即可得到EF=BM在RtBCM中,利用勾股定理即可得到BM的值【详解】如图,连接BMAEM与ADM关于AM所在的直线对称,AE=AD,MAD=MAEADM按照顺时针方向绕点A旋转90得到ABF,AF=AM,FAB=MAD,FAB=MAE,FAB+BAE=BAE+MAE,FAE=MAB,FAEMAB(SAS),EF=BM因为正方形ABCD的边长为1,则MC=1-1=3,BC=1在RtBCM中,BC2+MC2=BM2,
24、12+32=BM2,解得:BM =2,EF=BM=2故答案为:2【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等三、解答题(共66分)19、(1)抛物线的解析式为:;点的坐标为,点的坐标为;(2)存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.【分析】(1)根据对称轴公式可以求出a,从而可得抛物线解析式,再解出抛物线解析式y=0是的两个根,即可得到A,B的坐标;(2)根据解析式可求出C点坐标,然后设直线的解析式为,从而可求该解析式方程,假设存在点,使四边形
25、的面积最大,设点的坐标为,然后过点作轴,交直线于点,从而可求答案.【详解】解:(1)抛物线的对称轴是直线,解得,抛物线的解析式为:.当时,解得,点的坐标为,点的坐标为.答:抛物线的解析式为:;点的坐标为,点的坐标为.(2)当时,点的坐标为.设直线的解析式为,将,代入得,解得,直线的解析式为.假设存在点,使四边形的面积最大,设点的坐标为,如图所示,过点作轴,交直线于点,则点的坐标为,则,当时,四边形的面积最大,最大值是32,存在点,使得四边形的面积最大.答:存在点,使四边形的面积最大;点的坐标为,四边形面积的最大值为32.【点睛】本题考查的是一道综合题,考查的是二次函数与一次函数的综合问题,能够
26、熟练掌握一次函数与二次函数的相关问题是解题的关键.20、(1);(2);(3)是,【分析】(1)若,则 ,代入数值即可求得CD,从而求得的半径.(2)当与相切时,则CDAB,利用ACDABO,得出比例式求得CD,AD的长,过P点作PEAO于E点,再利用CPECAD,得出比例式求得P点的坐标,即可求得POB的面积.(3)若 与AB有一个交点,则与AB相切,由(2)可得PDAB,PD= ,则 若 与AB有两个交点,设另一个交点为F,连接CF,则CFD=90,由(2)可得CF=3,过P点作PGAB于G点,则DG= ,PG为DCF的中位线,PG= , 则,综上所述,PAB的面积是定值,为 .【详解】(
27、1)根据题意得:OA=8,OB=6,OC=3AC=5即 CD= 的半径为 (2)在直角三角形AOB中,OA=8,OB=6,AB= ,当与相切时,CDAB,ADC=AOB=90,CAD=BAOACDABO ,即 CD=3,AD=4CD为圆P的直径CP= 过P点作PEAO于E点,则PEC=ADC=90,PCE=ACDCPECAD 即CE= OE= 故P点的纵坐标为POB的面积= (3)若 与AB有一个交点,则与AB相切,由(2)可得PDAB,PD= ,则 若 与AB有两个交点,设另一个交点为F,连接CF,则CFD=90,由(2)可得CF=3,过P点作PGAB于G点,则DG= ,PG为DCF的中位线
28、,PG= , 则.综上所述,PAB的面积是定值,为 .【点睛】本题考查的是圆及相似三角形的综合应用,熟练的掌握直线与圆的位置关系,相似三角形的判定是关键.21、(1);(2)证明见解析;【分析】(1)过点C作CHAB于点 H,由等腰三角形的性质和直角三角形的性质可得AB30,AHBH3,CH,由CDB45,可得CDCH;(2)延长BC到N,使CNBC,由“SAS”可证CENCDA,可得ENAD,NA30,由三角形中位线定理可得CFEN,CFEN,可得BCFN30,可证DGCF,DGCF,即可证四边形CFDG是矩形,可得结论;由“SAS”可证EFDBF,可得BDE,则当CD取最小值时,有最小值,
29、即可求解【详解】解:(1)如图1,过点C作CHAB于点 H,ACBC,ACB120,CHAB,AB30,AHBH3,在RtBCH中,tanB,tan30CH,CDH45,CHAB,CDHDCH45,DHCH,CDCH;(2)如图2,延长BC到N,使CNBC,ACBC,ACB120,AABC30,NCA60,ECD是等边三角形,ECCD,ECD60,NCAECD,NCEDCA,又CECD,ACBCCN,CENCDA(SAS),ENAD,NA30,BCCN,BFEF,CFEN,CFEN,BCFN30,ACFACBBCF90,又DGAC,CFDG,A30,DGAC,DGAD,DGCF,四边形CFDG
30、是平行四边形,又ACF90,四边形CFDG是矩形,CFD90CFDF;如图3,连接B,将CFD沿CF翻折得CF,CDC,DFF,CFDCF90,又EFBF,EFDBF,EFDBF(SAS),BDE,BCD,当B取最小值时,有最小值,当CD取最小值时,有最小值,当CDAB时,CD有最小值,ADCD,AB2AD2CD,最小值【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,矩形的判定和性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键22、(1)2t,(5t);(2)t=2或3;(3)t或1【分析】(1)根据路程=速度时间可求解;(2)根据S四边形PABQ=SABOS
31、PQO列出方程求解;(3)分或两种情形列出方程即可解决问题【详解】(1)OP=2tcm,OQ=(5t)cm故答案为:2t,(5t)(2)S四边形PABQ=SABOSPQO,191052t(5t),解得:t=2或3,当t=2或3时,四边形PABQ的面积为19cm2(3)POQ与AOB相似,POQ=AOB=90,或当,则,t,当时,则,t=1综上所述:当t或1时,POQ与AOB相似【点睛】本题是相似综合题,考查相似三角形的判定和性质、坐标与图形的性质、三角形的面积等知识,解答本题的关键是灵活运用所学知识解决问题,属于中考常考题型23、(1)A种款式的服装采购了65件,B种款式的服装采购了1件;(2)A种款式的服装最多能采购2件【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100 x)件,根据总价单价数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60m)件,根据总价单价数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100 x)件,依题意,得:80 x+40(100 x)6600,解得:x65,100 x1答:A种款式的服装
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年掌控中考复习配套课件:第九单元溶液
- 《老人与海》课件
- 2024年阿坝职业学院单招职业适应性测试题库及答案解析
- 单位管理制度集合大全【人力资源管理篇】
- 单位管理制度分享合集【人员管理】十篇
- 单位管理制度范文大合集【员工管理】十篇
- 单位管理制度呈现大全【人事管理篇】十篇
- 《诗五首》教案设计
- 第7单元 工业革命和国际共产主义运动的兴起(高频选择题50题)(解析版)
- UFIDAU培训课程委托代销
- 《络新妇之理》的女权主义解读
- (完整版)病例演讲比赛PPT模板
- 国开大学2020年09月1317《社会工作行政(本)》期末考试参考答案
- 通达信公式编写学习资料
- 社会责任管理体系培训课件
- 房屋结构安全隐患自查排查记录表
- 统编版四年级上册语文期末总复习知识PPT
- 《有限元分析及应用》(曾攀清华大学出版社)第四章课后习题答案
- GB/T 9797-2005金属覆盖层镍+铬和铜+镍+铬电镀层
- 医疗机构合理用药的指标
- 《网络文件提交系统的设计与实现【论文】12000字》
评论
0/150
提交评论