2023学年安徽省宣城市名校数学九年级第一学期期末学业质量监测试题含解析_第1页
2023学年安徽省宣城市名校数学九年级第一学期期末学业质量监测试题含解析_第2页
2023学年安徽省宣城市名校数学九年级第一学期期末学业质量监测试题含解析_第3页
2023学年安徽省宣城市名校数学九年级第一学期期末学业质量监测试题含解析_第4页
2023学年安徽省宣城市名校数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,函数y1=x1和函数的图象相交于点M(2,m),N(1,n),若y1y2,则x的取值范围是()Ax1或0 x2Bx1或x2C1x0或0 x2D1x0或x22如图,在正方形中,以为边作等边,延长分别交于点,连接与相交于点,给出下列结论: ;其中正确的是( )ABCD3抛物线()的部分图象如图所示,与轴

2、的一个交点坐标为,抛物线的对称轴是,下列结论是:;方程有两个不相等的实数根;若点在该抛物线上,则,其中正确的个数有( )A1个B2个C3个D4个4下列说法正确的个数是( )相等的弦所对的弧相等;相等的弦所对的圆心角相等;长度相等的弧是等弧;相等的弦所对的圆周角相等;圆周角越大所对的弧越长;等弧所对的圆心角相等;A个B个C个D个5某市从2017年开始大力发展“竹文化”旅游产业据统计,该市2017年“竹文化”旅游收入约为2亿元预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A2%B4.4%C20%D44%6关于x的一元二次方

3、程x2+bx+c0的两个实数根分别为2和3,则( )Ab1,c6Bb1,c6Cb5,c6Db1,c67如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D38如图,ABCD,点E在CA的延长线上.若BAE=40,则ACD的大小为( )A150B140C130D1209如图,在ABC中,ACBC,ABC30,点D是CB延长线上的一点,且ABBD,则tanD的值为()ABCD10下列方程是一元二次方程的是( )A2x25x+3B2x2y+1=0Cx2=0D+ x=2二、填空题(每小题3分,共24分)11如图,抛物线y=x2+mx+2m2(m0)与x轴交于A,B两点,

4、点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_12如图,菱形的边长为4,E为的中点,在对角线上存在一点,使的周长最小,则的周长的最小值为_13已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_(表示为y=a(x+m)2+k的形式)14圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是_cm2(结果保留)15如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=_ 16如图,把绕着点顺时针方向旋转角度(),得到,若,三点在同一条直线上,则的度数是_1

5、7写出一个对称轴是直线,且经过原点的抛物线的表达式_18如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把CDB绕点C旋转90,点D的对应点为点D,则OD的长为_三、解答题(共66分)19(10分)如图,在RtABC中,ACB90,ACBC4cm,点P从点A出发以lcm/s的速度沿折线ACCB运动,过点P作PQAB于点Q,当点P不与点A、B重合时,以线段PQ为边向右作正方形PQRS,设正方形PQRS与ABC的重叠部分面积为S,点P的运动时间为t(s)(1)用含t的代数式表示CP的长度;(2)当点S落在BC边上时,求t的值;(3)当正方形PQ

6、RS与ABC的重叠部分不是五边形时,求S与t之间的函数关系式;(4)连结CS,当直线CS分ABC两部分的面积比为1:2时,直接写出t的值20(6分)(1)(问题发现)如图,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF填空:线段CF与DG的数量关系为 ;直线CF与DG所夹锐角的度数为 (2)(拓展探究)如图,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图进行说明(3(解决问题)如图,ABC和ADE都是等腰直角三角形,BACDAE90,ABAC4,O为AC的中点若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为

7、 (直接写出结果)21(6分)如图,在矩形纸片中,已知,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.(1)连接.则_,_;(2)当恰好经过点时,求线段的长;(3)在点从点移动到点的过程中,求点移动的路径长.22(8分)有三张卡片(形状、大小、质地都相同),正面分别写上整式将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张第一次抽取的卡片正面的整式作为分子,第二次抽取的卡片正面的整式作为分母(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率23(8分)某校九年级学生某科目学期总评成

8、绩是由完成作业、单元检测、期末考试三项成绩构成的,如果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075_若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩(1)请计算小张的学期总评成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?24(8分)已知二次函数(m 为常数)(1)证明:不论 m 为何值,该函数的图像与 x 轴总有两个公共点;(2)当 m 的值改变时,该函数的图像与 x 轴两个公共点之间的距离是否改变?若不变, 请求出距离;若改变,请说明理

9、由25(10分)台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数(1)求大桥上车流密度为50/辆千米时的车流速度;(2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大

10、桥上车流量的最大值26(10分)已知:如图,在ABC中,AD是BAC的平分线,ADEB求证:(1)ABDADE;(2)AD2AEAB参考答案一、选择题(每小题3分,共30分)1、D【解析】析:根据反比例函数的自变量取值范围,y1与y1图象的交点横坐标,可确定y1y1时,x的取值范围解答:解:函数y1=x-1和函数y1=的图象相交于点M(1,m),N(-1,n),当y1y1时,那么直线在双曲线的上方,此时x的取值范围为-1x0或x1故选D点评:本题考查了反比例函数与一次函数的交点问题的运用关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围2、A【分析】根据等边三角形、正方形的性质求

11、得ABE=30,利用直角三角形中30角的性质即可判断;证得PC=CD,利用三角形内角和定理即可求得PDC,可求得BPD,即可判断;求得FDP=15,PBD=15,即可证明PDEDBE,判断正确;利用相似三角形对应边成比例可判断【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,;故正确; PC=CD,PCD=30,PDC=CPD =75,BPD=BPC+ CPD =60+75=135,故正确;PDC=75,FDP=ADC -PDC=90- 75=15,DBA=45,PBD=DBA -AB

12、E =45-30=15,EDP=EBD,DEP=DEP,PDEDBE,故正确;PDEDBE,即,故正确; 综上:都是正确的故选:A【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理3、D【分析】根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.【详解】如图,与轴的一个交点坐标为,抛物线的对称轴是,实验求出二次函数与x轴的另一个交点为(-2,0)故可补全图像如下,由图可知a0,c0,对称轴x=1,故b0,错误,对称轴x=1,故x=-,,正确;如图,作y=2图像,与函数有两个交点,方程有两个不相等的实数根,正确;x=-2时,y=

13、0,即,正确;抛物线的对称轴为x=1,故点在该抛物线上,则,正确;故选D【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.4、A【分析】根据圆的相关知识和性质对每个选项进行判断,即可得到答案.【详解】解:在同圆或等圆中,相等的弦所对的弧相等;故错误;在同圆或等圆中,相等的弦所对的圆心角相等;故错误;在同圆或等圆中,长度相等的弧是等弧;故错误;在同圆或等圆中,相等的弦所对的圆周角相等;故错误;在同圆或等圆中,圆周角越大所对的弧越长;故错误;等弧所对的圆心角相等;故正确;说法正确的有1个;故选:A.【点睛】本题考查了弧,弦,圆心角,圆周角定理,要求学生对基本的概念定理有透彻的理

14、解,解题的关键是熟练掌握所学性质定理.5、C【解析】分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=2.2(不合题意,舍去)答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%故选C点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键6、B【分析】根据一元二次方程根与系数的关系

15、得到2+3b,23c,即可得到b与c的值.【详解】由一元二次方程根与系数的关系得:2+3b,23c,b1,c6故选:B.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c0的两个根满足 ,是解题的关键.7、D【分析】根据等边三角形的性质得到A=60,再利用圆周角定理得到BOC=120,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60,BOC=2A=120,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120是解决问题的关键8、B【解析】试题分析:如图,延长DC

16、到F,则ABCD,BAE=40,ECF=BAE=40.ACD=180-ECF=140.故选B考点:1.平行线的性质;2.平角性质.9、D【分析】设ACm,解直角三角形求出AB,BC,BD即可解决问题【详解】设ACm,在RtABC中,C90,ABC30,AB2AC2m,BCACm,BDAB2m,DC2m+m,tanADC2故选:D【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型10、C【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数由这四个条件对四个选项进行

17、验证,满足这四个条件者为正确答案【详解】A、不是方程,故本选项错误;B、方程含有两个未知数,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、不是整式方程,故本选项错误故选:C【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1二、填空题(每小题3分,共24分)11、【分析】过点O作OHAC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案【详解】解:过点O作OHAC交BE于点H,令y=x2+mx+2m2=0,x1=-m,x2=2m,A

18、(-m,0)、B(2m,0),OA=m,OB=2m,AB=3m,D是OC的中点,CD=OD,OHAC,OH=CE,故答案为:【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OHAC交BE于点H,此题有一定的难度12、+2【分析】连接DE,因为BE的长度固定,所以要使PBE的周长最小,只需要PB+PE的长度最小即可【详解】解:连结DEBE的长度固定,要使PBE的周长最小只需要PB+PE的长度最小即可,四边形ABCD是菱形,AC与BD互相垂直平分,PD=PB,PB+PE的最小长度为DE的长,菱形ABCD的边长为4,E为BC的中点,DAB=60,BCD是等边三角形,又菱形ABCD的

19、边长为4,BD=4,BE=2,DE=,PBE的最小周长=DE+BE=,故答案为:【点睛】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键13、y=(x1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(m,k),根据题意图象的顶点位于第一象限,所以可得:m0,因此满足m0的点即可,故答案为:(答案不唯一).14、24【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可【详解】解:圆锥的底面半径为4cm,圆锥的底面圆的周长=24=8,圆锥的侧面积=86=24(cm2)故

20、答案为:24【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长也考查了扇形的面积公式:S=lR,(l为弧长)15、-1【解析】解:因为反比例函数,且矩形OABC的面积为1,所以|k|=1,即k=1,又反比例函数的图象在第二象限内,k0,所以k=1故答案为116、【分析】首先根据邻补角定义求出BCC=180-BCB=134,再根据旋转的性质得出BCA=C,AC=AC,根据等边对等角进一步可得出BCA=ACC=C,再利用三角形内角和求出CAC的度数,从而得出的度数【详解】解:B,C,C三点在同一条直线上,BCC=180-BCB=134

21、,又根据旋转的性质可得,CAC=BAB=,BCA=C,AC=AC,ACC=C,BCA=ACC=BCC=67=C,CAC=180-ACC-C=46,=46故答案为:46【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等同时也考查了等腰三角形的性质,三角形的内角和以及邻补角的定义17、答案不唯一(如)【分析】抛物线的对称轴即为顶点横坐标的值,根据顶点式写出对称轴是直线的抛物线表达式,再化为一般式,再由经过原点即为常数项c为0,即可得到答案.【详解】解:对称轴是直线的抛物线可为: 又抛物线经过原点,即C=0,对称轴是直线,且经过原

22、点的抛物线的表达式可以为:, 故本题答案为:(答案不唯一)【点睛】本题考查了抛物线的对称轴与抛物线解析式的关系关键是明确对称轴的值与顶点横坐标相同18、3或【分析】由题意,可分为逆时针旋转和顺时针旋转进行分析,分别求出点OD的长,即可得到答案【详解】解:因为点D(4,1)在边AB上,所以AB=BC=4,BD=4-1=3;(1)若把CDB顺时针旋转90,则点D在x轴上,OD=BD=3,所以D(3,0);(2)若把CDB逆时针旋转90,则点D到x轴的距离为8,到y轴的距离为3,所以D(3,8),;故答案为:3或【点睛】此题主要考查了坐标与图形变化旋转,考查了分类讨论思想的应用,解答此题的关键是要注

23、意分顺时针旋转和逆时针旋转两种情况三、解答题(共66分)19、(1)当0t4时,CP4t,当4t8时,CPt4;(1);(3)S;(4)或【分析】(1)分两种情形分别求解即可(1)根据PA+PC4,构建方程即可解决问题(3)分两种情形:如图1中,当0t时,重叠部分是正方形PQRS,当4t8时,重叠部分是PQB,分别求解即可(4)设直线CS交AB于E分两种情形:如图41中,当AEAB时,满足条件如图41中,当AEAB时,满足条件分别求解即可解决问题【详解】解:(1)当0t4时,AC4,APt,PCACAP4t;当4t8时,CPt4;(1)如图1中,点S落在BC边上,PAt,AQQP,AQP90,

24、AQPQPSt,CPCS,C90,PCCSt,AP+PCBC4,t+t4,解得t(3)如图1中,当0t时,重叠部分是正方形PQRS,S(t)1t1当4t8时,重叠部分是PQB,S(8t)1综上所述,S(4)设直线CS交AB于E如图41中,当AEAB时,满足条件,PSAE,解得t如图41中,当AEAB时,满足条件同法可得:,解得t,综上所述,满足条件的t的值为或【点睛】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,以及正方形的性质,熟练掌握相似三角形的判定与性质是解本题的关键20、(1)CFDG;45;(2)成立,证明详见解析;(3)【分析】(1)【问题发现】连接AF易证A,F,C

25、三点共线易知AFAGACAD,推出CFACAF(ADAG)DG(2)【拓展探究】连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O证明CAFDAG即可解决问题(3)【解决问题】证明BADCAE,推出ACEABC45,可得BCE90,推出点E的运动轨迹是在射线OCE上,当OECE时,OE的长最短【详解】解:(1)【问题发现】如图中,线段CF与DG的数量关系为CFDG;直线CF与DG所夹锐角的度数为45理由:如图中,连接AF易证A,F,C三点共线AFAGACAD,CFACAF(ADAG)DG故答案为CFDG,45(2)【拓展探究】结论不变理由:连接AC,AF,延长CF交DG的延长线于点

26、K,AG交FK于点OCADFAG45,CAFDAG,ACAD,AFAG,CAFDAG,AFCAGD,CFDG,AFOOGK,AOFGOK,KFAO45(3)【解决问题】如图3中,连接ECABAC,ADAE,BACDAE90,BADCAE,BACB45,BADCAE(SAS),ACEABC45,BCE90,点E的运动轨迹是在射线CE上,当OECE时,OE的长最短,易知OE的最小值为,故答案为.【点睛】本题考查的知识点是正方形的旋转问题,主要是利用相似三角形性质和全等三角形的性质来求证线段间的等量关系,弄清题意,作出合适的辅助线是解题的关键.21、(1),30;(2);(3)的长【分析】(1)直接

27、利用勾股定理可求出AC的长,再利用特殊角的三角函数值可得出DAC的度数(2)设CE=x,则DE=,根据已知条件得出,再利用相似三角形对应线段成比例求解即可.(3)点运动的路径长为的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC(2)由已知条件得出,,易证(3)如图所示,运动的路径长为的长由翻折得:的长【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.22、(1)见解析;(2)【分析】(1)用树状图或列表法把所有的情况表示出来即可;(2)根据树状图找到所有的情况数以及能组成分式的情况数,利用能组成分式的情况数与总数之比求概率即可【详解】(1)树状图如下:(2)总共有6种情况,其中能组成分式的有4种,所以(组成分式)【点睛】本题主要考查用树状图或列表法求随机事件的概率,掌握树状图或列表法和概率公式是解题的关键23、(1)小张的期末评价成绩为81分(2)最少考85分才能达到优秀【分析】(1)直接利用加权平均数的定义求解可得;(2)设小王期末考试成绩为x分,根据加权平均数的定义列出不等式求出最小整数解即可【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论