浙江省绍兴市阳明中学2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
浙江省绍兴市阳明中学2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
浙江省绍兴市阳明中学2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
浙江省绍兴市阳明中学2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
浙江省绍兴市阳明中学2023学年九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或12022019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟某初中学校为了尽快落实减负三十条

2、,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表下列关于40名同学每天做书面家庭作业的时间说法中,错误的是( )书面家庭作业时间(分钟)708090100110学生人数(人)472072A众数是90分钟B估计全校每天做书面家庭作业的平均时间是89分钟C中位数是90分钟D估计全校每天做书面家庭作业的时间超过90分钟的有9人3如图,一张矩形纸片ABCD的长,宽将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a: A2:1B:1C3:D3:24关于二次函数y=2x2+4,下列说法错误的是( )A它的开口方向向上B当x=0时,y有最大值4C它的对称

3、轴是y轴D顶点坐标为(0,4)5如图,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C下列结论错误的是( ) A二次函数的最大值为a+b+cB4a-2b+c0C当y0时,-1x3D方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.6已知二次函数,当时随的增大而减小,且关于的分式方程的解是自然数,则符合条件的整数的和是( )A3B4C6D87如图,已知O上三点A,B,C,半径OC=1,ABC=30,切线PA交OC延长线于点P,则PA的长为( )A2B CD8如图所示,图中既是轴对称图形,又是中心对称图形的是( )ABCD9等于

4、( )AB2C3D10用配方法解方程,经过配方,得到 ( )ABCD11如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内)在E处测得建筑物顶端A的仰角为24,则建筑物AB的高度约为(参考数据:sin240.41,cos240.91,tan24=0.45)()A21.7米B22.4米C27.4米D28.8米12计算的结果是( )ABCD二、填空题(每题4分,共24分)13将抛物线向左平移2个单位,再向

5、上平移1个单位后,得到的抛物线的解析式为_14已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .15方程x2+2x1=0配方得到(x+m)2=2,则m=_16已知二次函数y=-x2+2x+5,当x_时,y随x的增大而增大17如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30的方向,则海岛C到航线AB的距离CD等于 海里.18双曲线 在每个象限内,函数值y随x的增大而增大,则m的取值范围是_三、解答题(共78分)19(8分)解方程:(1)x2+4x210(2)x27x2020(8分)如图,某城建部门计划

6、在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率21(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条直

7、线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 22(10分)如图1,在平面直角坐标系中,抛物线yx2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P连接AC(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为(090),连接FA、FC求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移

8、,记平移中的正方形OMNG为正方形OMNG,当点M与点A重合时停止平移设平移的距离为t,正方形OMNG的边MN与AC交于点R,连接OP、OR、PR,是否存在t的值,使OPR为直角三角形?若存在,求出t的值;若不存在,请说明理由23(10分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为 ;24(10分)如图,在边长为4的正方形ABCD中,EDF90,点E在边AB上且不与点A重合,点F在边BC的延长线上,DE交AC于Q

9、,连接EF交AC于P(1)求证:ADECDF;(2)求证:PEPF;(3)当AE1时,求PQ的长25(12分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=x+60(30 x60)设这种双肩包每天的销售利润为w元(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?26 “一带一路”为我们打开了交流、合作的大门,也为

10、沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月

11、中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%求m的值参考答案一、选择题(每题4分,共48分)1、D【解析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120,即弦AB所对的圆周角的度数是60或120,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角

12、互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.2、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即90,正确;C、平均时间为:(70480790201008110)89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有819人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单3、B【分析】根据

13、折叠性质得到AFABa,再根据相似多边形的性质得到,即,然后利用比例的性质计算即可【详解】解:矩形纸片对折,折痕为EF,AFABa,矩形AFED与矩形ABCD相似,即,ab.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比相似多边形的对应角相等,对应边的比相等4、B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可.【详解】解:A. 因为20,所以它的开口方向向上,故不选A;B. 因为20,二次函数有最小值,当x=0时,y有最小值4,故选B;C. 该二次函数的对称轴是y轴,故不选C;D. 由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D.故

14、选:B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.5、D【分析】A. 根据对称轴为时,求得顶点对应的y的值即可判断;B. 根据当时,函数值小于0即可判断;C. 根据抛物线与轴的交点坐标即可判断D. 根据抛物线与直线的交点情况即可判断.【详解】A.当时,根据图象可知,正确不符合题意;B.当时,根据图象可知,正确不符合题意;C.抛物线是轴对称图形,对称轴是直线,点,所以与轴的另一个交点的坐标为,根据图象可知:当时,正确不符合题意;D. 根据图象可知:抛物线与直线有两个交点,关于的方程有两个不相等的实数根,本选项错误,符合题意故选:D【点睛】

15、本题考查了二次函数与系数的关系、根的判别式、抛物线与x轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键6、A【分析】由二次函数的增减性可求得对称轴,可求得a取值范围,再求分式方程的解,进行求解即可【详解】解:y=-x2+(a-2)x+3,抛物线对称轴为x= ,开口向下,当x2时y随着x的增大而减小,2,解得a6,解关于x的分式方程可得x=,且x3,则a5,分式方程的解是自然数,a+1是2的倍数的自然数,且a5,符合条件的整数a为:-1、1、3,符合条件的整数a的和为:-1+1+3=3,故选:A【点睛】此题考查二次函数的性质,由二次函数的性质求得a的取值范围是解题的关键7、B【

16、分析】连接OA,由圆周角定理可求出AOC=60,再根据AOC的正切即可求出PA的值.【详解】连接OA,ABC=30,AOC=60,PA是圆的切线,PAO=90,tanAOC =,PA= tan601=.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出AOC=60是解答本题的关键.8、C【解析】根据轴对称图形和中心对称图形的定义(轴对称图形是沿某条直线对折,对折的两部分能够完全重合的图形,中心对称图形是绕着某一点旋转后能与自身重合的图形)判断即可.【详解】解:A选项是中心对称图形但不是轴对称图形,A不符合题意;B选项是轴对称图形但不是中心对称图形,B不符

17、合题意;C选项既是轴对称图形又是中心对称图形,C符合题意;D选项既不是轴对称图形又不是中心对称图形.故选:C.【点睛】本题考查了轴对称图形与中心对称图形,熟练掌握轴对称图形与中心对称图形的判断方法是解题的关键.9、A【分析】先计算60度角的正弦值,再计算加减即可.【详解】故选A.【点睛】本题考查了特殊角的三角函数值的计算,能够熟练掌握特殊角的三角函数值是解题的关键.10、D【分析】通过配方法的步骤计算即可;【详解】,故答案选D【点睛】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键11、A【解析】作BMED交ED的延长线于M,CNDM于N首先解直角三角形RtCDN,求出CN,DN,

18、再根据tan24=,构建方程即可解决问题.【详解】作BMED交ED的延长线于M,CNDM于N在RtCDN中,设CN=4k,DN=3k,CD=10,(3k)2+(4k)2=100,k=2,CN=8,DN=6,四边形BMNC是矩形,BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在RtAEM中,tan24=,0.45=,AB=21.7(米),故选A【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键12、D【分析】根据同底数幂相乘的运算公式进行计算即可【详解】解:=故选:D【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解

19、题的关键二、填空题(每题4分,共24分)13、.【解析】将抛物线向左平移2个单位,再向上平移1个单位,抛物线的顶点(0,0)也同样向左平移2个单位,再向上平移1个单位,得到新抛物线的的顶点(-2,1).平移后得到的抛物线的解析式为.14、15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)2=15.6(),则这六个整点时

20、气温的中位数是15.6考点:折线统计图;中位数15、1【解析】试题解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m=1;故答案为116、x1【分析】把二次函数解析式化为顶点式,可求得其开口方向及对称轴,利用二次函数的增减性可求得答案【详解】解:y=-x2+2x+5=-(x-1)2+6,抛物线开口向下,对称轴为x=1,当x1时,y随x的增大而增大,故答案为:1【点睛】此题考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)17、10【详解】试题分析:BD设为x,因为C位于北偏东30,所以BCD

21、30在RTBCD中,BDx,CD3x又CAD30,在RTADC中,AB20,AD20 x,又ADCCDB,所以ADCD即:(3x)2=x(20+x),求出x10,故考点:1、等腰三角形;2、三角函数18、【分析】根据反比例函数的性质可知 ,y随x的增大而增大则k知小于0,即m-20,解得m的范围即可.【详解】反比例函数y随x的增大而增大m-20则m2【点睛】本题考查了反比例函数的性质,函数值y随x的增大而增大则k小于0,函数值y随x的增大而减小则k大于0.三、解答题(共78分)19、(1)x13,x27;(2)x1,x2【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可【详解】

22、解:(1)x2+4x210(x3)(x+7)0解得x13,x27;(2)x27x2049+857x解得x1,x2【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.20、(1)5m,(2)20%【分析】(1)设通道的宽度为x米由题意(502x)(402x)1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程【详解】(1)设通道宽度为xm,依题意得(502x)(402x)1200,即x250 x+2250解得x15,

23、x240(舍去)答:通道的宽度为5m(2)设每次降价的百分率为x,依题意得80(1x)251.2解得x10.220%,x21.8(舍去)答:每次降价的百分率为20%【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.21、(1)详见解析;(1)详见解析;BP=AB【分析】(1)根据要求画出图形即可;(1)连接BD,如图1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45,推出NQC=90,由CD=DN,可得D

24、Q=CD=DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQACP,DQ=PB,AQN=APC=45,

25、AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴22、(1)P(2,3),yACx+3;(2);(3)存在,t的值为3或,理由见解析【分析】(1)由抛物线yx2+x+3可求出点C,P,A的坐标,再用待定系数法,可求出直线AC的解析式;(2)在OC上取点H(0,),连接HF,AH,求出AH的长度,证HOFFOC,推出HFCF,由AF+CFAF+HFAH,即可求解;(3)先求出正方形的边长,通过ARMACO将相关线段用含t的代数式表示出来,再分三种情

26、况进行讨论:当ORP90时,当POR90时,当OPR90时,分别构造相似三角形,即可求出t的值,其中第三种情况不存在,舍去【详解】(1)在抛物线yx2+x+3中,当x0时,y3,C(0,3),当y3时,x10,x22,P(2,3),当y0时,则x2+x+3=0,解得:x14,x26,B(4,0),A(6,0),设直线AC的解析式为ykx+3,将A(6,0)代入,得,k,yx+3,点P坐标为P(2,3),直线AC的解析式为yx+3;(2)在OC上取点H(0,),连接HF,AH,则OH,AH,且HOFFOC,HOFFOC,HFCF,AF+CFAF+HFAH,AF+CF的最小值为;(3)正方形OMN

27、G的顶点N恰好落在线段AC上,GNMN,设N(a,a),将点N代入直线AC解析式,得,aa+3,a2,正方形OMNG的边长是2,平移的距离为t,平移后OM的长为t+2,AM6(t+2)4t,RMOC,ARMACO,即,RM2t,如图31,当ORP90时,延长RN交CP的延长线于Q,PRQ+ORM90,ROM+ORM90,PRQROM,又QOMR90,PQRRMO,PQ2+t-2=t,QR3RM1+t,解得,t13(舍去),t23;如图32,当POR90时,POE+ROM90,POE+EPO90,ROMEPO,又PEOOMR90,PEOOMR,即,解得,t;如图33,当OPR90时,延长OG交C

28、P于K,延长MN交CP的延长线于点T,KPO+TPR90,KOP+KPO90,KOPTPR,又OKPT90,KOPTPR,即,整理,得t2-t+30,b24ac0,此方程无解,故不存在OPR90的情况;综上所述,OPR为直角三角形时,t的值为3或【点睛】本题主要考查二次函数的图象和相似三角形的综合,添加合适的辅助线,构造相似三角形,是解题的关键.23、(1),;(2)见解析,或;(3)【分析】(1)根据图像对称轴是直线,得到,再将, 代入解析式,得到关于a、b、c的方程组,即可求得系数,得到解析式,再求出顶点坐标即可;(2)根据特定点画出二次函数的大致图象,根据二次函数与不等式的关系,即可得到

29、对应的x的取值范围 (3)求出当时,当时,y的值,即可求出的取值范围【详解】(1)因为图像对称轴是直线,所以,将, 代入解析式,得:由题知,解得,所以解析式为:;当时,所以顶点坐标(2)二次函数的大致图象:当或,(3)当时,得,当时,得,所以y取值范围为 ,即的取值范围为【点睛】本题考查了待定系数法的求解析式、二元一次方程与不等式的关系,本题难度不大,是二次函数中经常考查的类型24、(1)见解析;(2)见解析;(3)【分析】(1)根据ASA证明即可(2)作FHAB交AC的延长线于H,由“AAS”可证APEHPF,可得PEPF;(3)如图2,先根据平行线分线段成比例定理表示,可得AQ的长,再计算AH的长,根据(2)中的全等可得APPH,由线段的差可得结论【详解】(1)证明:四边形ABCD是正方形,DADC,DAEBCDDCFADC90,ADE+EDC90EDF90EDC+CDF90ADECDF在ADE和CDF中,ADECDF(ASA)(2)证明:由(1)知:ADECDF,AECF,作FHAB交AC的延长线于H四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论