版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、天津中山中学高二数学理期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知ABC中,且,则ABC 是( )A. 正三角形B. 直角三角形C. 正三角形或直角三角形D. 直角三角形或等腰三角形参考答案:A【分析】由tanA+tanBtanAtanB,推导出C60,由,推导出A60或90,从而得到ABC形状【详解】tanA+tanBtanAtanB,即tanA+tanB(1tanAtanB),tan(A+B),又A与B都为三角形的内角,A+B120,即C60,,2B60或120,则A=90或60.由题意知ABC等边三角形故
2、选:A【点睛】本题考查三角形形状的判断,是中档题,解题时要认真审题,注意两角和与差的正切函数及二倍角正弦公式的合理运用2. 直三棱柱中,则直线与直线所成角的余弦值为( )A B C D参考答案:D3. 点P是双曲线(a0,b0)上的点,F1,F2是其焦点,双曲线的离心率是,且,若F1PF2的面积是18,则a+b的值等于( )A. 7 B. 9 C. D. 参考答案:D不妨设点P是双曲线右支上的点,,则,解得,则的值等于,故选C.4. 曲线在点处的切线方程为( )A. B. C. D.参考答案:C略5. 设,则 参考答案:B略6. 在同一个坐标系中画出函数y=ax,y=sinax的部分图象,其中
3、a0且a1,则下列所给图象中可能正确的是( )ABCD参考答案:D【考点】指数函数的图像与性质;正弦函数的图象【专题】压轴题;数形结合【分析】本题是选择题,采用逐一排除法进行判定,再根据指对数函数和三角函数的图象的特征进行判定【解答】解:正弦函数的周期公式T=,y=sinax的最小正周期T=;对于A:T2,故a1,因为y=ax的图象是减函数,故错;对于B:T2,故a1,而函数y=ax是增函数,故错;对于C:T=2,故a=1,y=ax=1,故错;对于D:T2,故a1,y=ax是减函数,故对;故选D【点评】本题主要考查了指数函数的图象,以及对三角函数的图象,属于基础题7. 在等差数列中,若,公差,
4、则有,类比上述性质,在等比数列中,若,公比,则,的一个不等关系是 ( ) 参考答案:A略8. 若三条直线l1:4x+y=4,l2:mx+y=0,l3:2x3my=4不能围成三角形,则实数m的取值最多有( )A2个B3个C4个D5个参考答案:C【考点】两条直线的交点坐标 【专题】直线与圆【分析】三直线不能构成三角形时共有4种情况,即三直线中其中有两直线平行或者是三条直线经过同一个点,在这四种情况中,分别求出实数m的值【解答】解:当直线l1:4x+y=4 平行于 l2:mx+y=0时,m=4当直线l1:4x+y=4 平行于 l3:2x3my=4时,m=,当l2:mx+y=0 平行于 l3:2x3m
5、y=4时,m=,此时方程无解当三条直线经过同一个点时,把直线l1 与l2的交点(,)代入l3:2x3my=4得:3m=4,解得 m=1或m=,综上,满足条件的m有4个,故选:C【点评】本题考查三条直线不能构成三角形的条件,三条直线中有两条直线平行或者三直线经过同一个点9. 某年高考中,某省10万考生在满分为150分的数学考试中,成绩分布近似服从正态分布,则分数位于区间(130,150分的考生人数近似为( )(已知若,则, , )A. 1140B. 1075C. 2280D. 2150参考答案:C【分析】先计算区间(110,130)概率,再用0.5减得区间(130,150)概率,乘以总人数得结果
6、.【详解】由题意得,因此,所以,即分数位于区间分的考生人数近似为,选C.【点睛】正态分布下两类常见的概率计算(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x对称,及曲线与x轴之间的面积为1.(2)利用3原则求概率问题时,要注意把给出的区间或范围与正态变量的,进行对比联系,确定它们属于(,),(2,2),(3,3)中的哪一个.10. 设函数,若,则正数a的取值范围为( )A(0,e) B(e,+) C. D参考答案:C二、 填空题:本大题共7小题,每小题4分,共28分11. 有五条线段,其长度分别是1,2,5,6,8,若从这五条线段中任取三条,则它们恰能构成
7、三角形的概率为 .参考答案:1/512. 已知an满足a1=1,an+an+1=()n(nN*),Sn=a1+a2?3+a3?32+an?3n1,类比课本中推导等比数列前n项和公式的方法,可求得4Sn3nan= 参考答案:n考点:类比推理 专题:计算题;等差数列与等比数列分析:先对Sn=a1+a2?3+a3?32+an?4n1 两边同乘以3,再相加,求出其和的表达式,整理即可求出4Sn3nan的表达式解答:解:由Sn=a1+a2?3+a3?32+an?3n1 得3?Sn=3?a1+a2?32+a3?33+an1?3n1+an?3n +得:4Sn=a1+3(a1+a2)+32?(a2+a3)+3
8、n1?(an1+an)+an?3n=a1+3+32?()2+3n1?()n1+3n?an=1+1+1+1+3n?an=n+3n?an所以4Sn3n?an=n,故答案为:n点评:本题主要考查数列的求和,用到了类比法,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握13. 命题“”的否定是 _.参考答案:略14. 已知、分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于、两点,若是锐角三角形,则该双曲线离心率的取值范围是_ 参考答案:15. 圆心在直线2xy7=0上的圆C与y轴交于两点A(0,4)、B(0,2),则圆C的方程为 参考答案:(x2)2+(y+3)2=5【考点】圆的标
9、准方程 【专题】计算题【分析】由垂径定理确定圆心所在的直线,再由条件求出圆心的坐标,根据圆的定义求出半径即可【解答】解:圆C与y轴交于A(0,4),B(0,2),由垂径定理得圆心在y=3这条直线上又已知圆心在直线2xy7=0上,联立,解得x=2,圆心C为(2,3),半径r=|AC|=所求圆C的方程为(x2)2+(y+3)2=5故答案为(x2)2+(y+3)2=5【点评】本题考查了如何求圆的方程,主要用了几何法来求,关键确定圆心的位置;还可用待定系数法16. 某学生5天的生活费(单位:元)分别为:, , 8, 9, 6. 已知这组数据的平均数为8, 方差为2, 则 . 参考答案:317. 将参数
10、方程(t为参数),转化成普通方程为_参考答案:【分析】将参数方程变形为,两式平方再相减可得出曲线的普通方程.【详解】将参数方程变形为,两等式平方得,上述两个等式相减得,因此,所求普通方程为,故答案为:.【点睛】本题考查参数方程化为普通方程,在消参中,常用平方消元法与加减消元法,考查计算能力,属于中等题.三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (12分)已知点A(1,2)是抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x=a(a1)交抛物线C于点B,交直线l1于点D(1)求直线l1的方程;(2)设BAD的面积为S1,求|BD
11、|及S1的值;(3)设由抛物线C,直线l1,l2所围成的图形的面积为S2,求证:S1:S2的值为与a无关的常数参考答案:【考点】直线与圆锥曲线的综合问题;直线的一般式方程【分析】(1)由y=2x2,得y=4x当x=1时,y=4由此能求出l1的方程(2)由,得:B点坐标为(a,2a2)由,得D点坐标(a,4a2)点A到直线BD的距离为|a+1|由此能求出|BD|及S1的值(3)当a1时,S1=(a+1)3,S2=1a2x2(4x2)dx=1a(2x2+4x+2)dx=S1:S2=当a1时,S1=(a+1)3,S2=a12x2(4x2)dx=a1(2x2+4x+2)dx=S1:S2=,综上可知S1
12、:S2的值为与a无关的常数,这常数是【解答】解:(1)由y=2x2,得y=4x当x=1时,y=4(2分)l1的方程为y2=4(x+1),即y=4x2(3分)(2)由,得:B点坐标为(a,2a2)(4分)由,得D点坐标(a,4a2)点A到直线BD的距离为|a+1|(6分)|BD|=2a2+4a+2=2(a+1)2S1=|a+1|3(7分)(3)当a1时,S1=(a+1)3,(8分)S2=1a2x2(4x2)dx=1a(2x2+4x+2)dx=(9分)S1:S2=(11分)当a1时,S1=(a+1)3S2=a12x2(4x2)dx=a1(2x2+4x+2)dx=(13分)S1:S2=,综上可知S1
13、:S2的值为与a无关的常数,这常数是(14分)【点评】本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意双曲线的性质、导数、定积分的灵活运用,合理地进行等价转化19. (本小题满分10分)已知在四棱锥PABCD中,底面ABCD是矩形,且AD2,AB1,PA平面ABCD,E、F分别是线段AB、BC的中点 (1)证明:PFFD;(2)判断并说明PA上是否存在点G,使得EG平面PFD;(3)若PB与平面ABCD所成的角为45,求二面角APDF的余弦值参考答案:试题分析:解法一(向量法)(I)建立如图所示的空间直角坐标系A-xyz,分别求出直线PF
14、与FD的平行向量,然后根据两个向量的数量积为0,得到PFFD;()求出平面PFD的法向量(含参数t),及EG的方向向量,进而根据线面平行,则两个垂直数量积为0,构造方程求出t值,得到G点位置;()由是平面PAD的法向量,根据PB与平面ABCD所成的角为45,求出平面PFD的法向量,代入向量夹角公式,可得答案 (2)解:设平面PFD的法向量为n=(x,y,z),由得令z=1,解得:x=y=.n=.20. 已知直线l的方程为. (1)求过点A(3,2),且与直线l垂直的直线l1的方程;(2)求与直线l平行,且到点P(3,0)的距离为的直线l2的方程.参考答案:(1)设与直线l:2x-y+1=0垂直
15、的直线的方程为:x+2y+m=0,-2分把点A(3,2)代入可得,3+22+m=0,解得m=-7-4分过点A(3,2)且与直线l垂直的直线方程为:x+2y-7=0;-5分(2)设与直线l:2x-y+1=0平行的直线的方程为:2x-y+c=0,-7分点P(3,0)到直线的距离为,解得c=-1或-11-8分直线方程为:2x-y-1=0或2x-y-11=0-10分21. (本小题12分(1)小问6分,(2)小问7分)所有棱长均为1的四棱柱如下图所示,.(1)证明:平面平面;(2)当为多大时,四棱锥的体积最大,并求出该最大值.参考答案:(1)由题知,棱柱的上下底面为菱形,则,2分由棱柱性质可知,又,故4分由得平面,又平面,故平面平面6分(2)设,由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现合集员工管理篇
- 单位管理制度呈现大合集人员管理篇
- 工作转正自我鉴定4篇
- 3D打印在计算机维修中的创新应用
- 《用色彩画心情》课件
- 第3单元+中国特色社会主义道路
- 物流行业顾问工作总结
- 乒乓球比赛的作文汇编10篇
- 输液室护士的职责概述
- 游乐园前台服务感悟
- 【9历期末】安徽省合肥市包河区智育联盟2023-2024学年九年级上学期1月期末历史试题
- 2024年度专业外语培训机构兼职外教聘任合同3篇
- 个人的车位租赁合同范文-个人车位租赁合同简单版
- 2025-2025学年小学数学教研组工作计划
- 水族馆改造合同
- 湖南省益阳市2022-2023学年高三上学期数学期末试卷
- 【MOOC】教学研究的数据处理与工具应用-爱课程 中国大学慕课MOOC答案
- 《小学科学实验创新》课件
- 拌合站安全事故案例
- 《红色家书》读书分享会主题班会课件
- 2025年广东省春季高考数学仿真模拟试卷试题(含答案解析+答题卡)
评论
0/150
提交评论