




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图:已知AB10,点C、D在线段AB上且ACDB2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边AEP和等边PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是( )A5B4C3D02如图,l1l2l
2、3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F若,DE4.2,则DF的长是()AB6C6.3D10.53下列抛物线中,其顶点在反比例函数y的图象上的是()Ay(x4)2+3By(x4)23Cy(x+2)2+1Dy(x+2)214如图,在ABC中,BAC65,将ABC绕点A逆时针旋转,得到ABC,连接CC若CCAB,则BAB的度数为( )A65B50C80D1305如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为( )ABCD6下列图形中一定是相似形的是( )A两个菱形B两个等边三角形C两个矩形D两个直角三角形7抛物线y=x22x+2的顶点坐标为()A(
3、1,1)B(1,1)C(1,3)D(1,3)8如图,ADBECF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D89抛物线y=2(x1)23与y轴交点的横坐标为( )A3B4C5D010如图,在RtABC中,ACB90,CDAB于D,下列式子正确的是()AsinABcosACtanADcosB二、填空题(每小题3分,共24分)11西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至
4、线的距离(即的长)为_.12如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为_cm13写出一个顶点坐标是(1,2)且开口向下的抛物线的解析式_14平面直角坐标系xOy中,若点P在曲线y上,连接OP,则OP的最小值为_15为了估计一个不透明的袋子中白球的数量袋中只有白球,现将5个红球放进去这些球除颜色外均相同随机摸出一个球记下颜色后放回每次摸球前先将袋中的球摇匀,通过多次重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中白球的个数大约为_16ABC与ABC是位似图形,且ABC与ABC的位似比是1:2,已知ABC的面积是3,则ABC的面积是_17
5、如图,在ABCD中,点E是AD边上一点,AE:ED1:2,连接AC、BE交于点F.若SAEF1,则S四边形CDEF_.18如图,直线y=+4与x轴、y轴分别交于A、B两点,把AOB绕点A顺时针旋转90后得到AOB,则点B的坐标是_三、解答题(共66分)19(10分)在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)20(6分)用适当的方法解下方程:21(
6、6分)已知二次函数与轴交于、(在的左侧)与轴交于点,连接、. (1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、,求的周长最小值;(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧). 将绕点顺时针旋转至. 抛物线的对称轴上有动点,坐标系内是否存在一点,使得以、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.22(8分)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为x=1,且抛物线经过A(1,0)、C(0,3)两点,与x轴交于另一点B(1)求这条抛物线所对应的函数关系式;(2)在抛物线
7、的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使PCB=90的点P的坐标23(8分)已知在平面直角坐标系中,抛物线与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQAO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且ABC与COM相似,求点M的坐标24(8分)2019年11月5日,第二届中国国际进口博览会(The 2nd China International lmport Expo)在
8、上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.(1)求小滕选择.中国馆的概率;(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率. 25(10分)如图,无人机在空中处测得地面、两点的俯角分别为60、45,如果无人机距地面高度米,点、在同水平直线上,求、两点间的距离(结果保留根号)26(10分)用适当的方法解方程:(1)x2+2x=0(2)x24x+1=0参考
9、答案一、选择题(每小题3分,共30分)1、C【分析】本题通过做辅助线构造新三角形,继而利用等边三角形性质求证四边形HFPE为平行四边形,进一步结合点G中点性质确定点G运动路径为HCD中位线,最后利用中位线性质求解【详解】延长AE与BF使其相交于点H,连接HC、HD、HP,如下图所示:由已知得:A=FPB=60,B=EPA=60,AHPF,BHPE,四边形HFPE为平行四边形,EF与PH互相平分,又点G为EF中点,点G为PH中点,即在点P运动过程中,点G始终为PH的中点,故点G的运动轨迹为HCD的中位线MN,即点G的移动路径长为1故选:C【点睛】本题考查等边三角形性质以及动点问题,此类型题目难点
10、在于辅助线的构造,需要多做类似题目积累题感,涉及动点运动轨迹时,其路径通常是较为特殊的线段或图形,例如中位线或圆2、D【分析】根据平行线分线段成比例定理得出,再把已知条件代入求解即可【详解】解:l1l2l3,DE4.2,即,解得:EF6.3,DFDE+EF10.1故选:D【点睛】本题考查平行线分线段成比例定理熟练掌握平行线分线段成比例定理是解题关键3、A【分析】根据y得kxy12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上【详解】解:y,kxy12,A、y(x4)2+3的顶点为(4,3),4312,故y(x4)2+3的顶点在反比例函数y的图象上,B、y(x4)23的顶点为(4,3)
11、,4(3)1212,故y(x4)23的顶点不在反比例函数y的图象上,C、y(x+2)2+1的顶点为(2,1),21212,故y(x+2)2+1的顶点不在反比例函数y的图象上,D、y(x+2)21的顶点为(2,1),2(1)212,故y(x+2)21的顶点不在反比例函数y的图象上,故选:A【点睛】本题考查的知识点是抛物线的顶点坐标以及反比例函数图象上点的坐标,根据抛物线的解析式确定抛物线的顶点坐标是解此题的关键4、B【分析】根据平行线的性质可得,然后根据旋转的性质可得,根据等边对等角可得,利用三角形的内角和定理求出,根据等式的基本性质可得,从而求出结论【详解】解:BAC65,AB由旋转的性质可得
12、,故选B【点睛】此题考查的是平行线的性质、旋转的性质和等腰三角形的性质,掌握平行线的性质、旋转的性质和等边对等角是解决此题的关键5、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到RtADERtACB,于是【详解】ACB=90,AC=BC=1,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键6、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形【详解】解:等边三角形的对应角相等,对应边的
13、比相等,两个等边三角形一定是相似形,又直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B【点睛】本题考查了相似多边形的识别判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备7、A【解析】分析:把函数解析式整理成顶点式形式,然后写出顶点坐标即可详解:y=x2-2x+2=(x-1)2+1,顶点坐标为(1,1)故选A点睛:本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键8、C【解析】解:ADBECF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.9、D【分析】把x
14、=0代入抛物线y=2(x1)23,即得抛物线y=2(x1)23与y轴的交点【详解】当x=0时,抛物线y=2(x1)23与y轴相交,把x=0代入y=2(x1)23,求得y=-5,抛物线y=2(x1)23与y轴的交点坐标为(0,-5)故选:D【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点10、A【分析】利用同角的余角相等可得ABCD,再根据锐角三角函数的定义可得答案【详解】解:ACB90,CDAB,A+DCA90,DCA+BCD90,ABCD,sinAsinBCD;cosAcosBCD= ;tanA;cosB;所以B、C、D均错
15、误故选:A【点睛】本题考查的是锐角三角函数定义,理解熟记锐角三角函数定义是解题关键,需要注意的是锐角三角函数是在直角三角形的条件下定义的二、填空题(每小题3分,共24分)11、【分析】直接根据正切的定义求解即可.【详解】在RtABC中,约为,高为,tanABC=,BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.12、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CDAB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在RtOAD中,利用勾股定理得(
16、50-x)2+402=502,然后解方程即可【详解】解:连接OA、如图,设O的半径为R,CD为水深,即C点为弧AB的中点,CDAB,CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,在RtOAD中,OA=50,OD=50-x,AD=40,OD2+AD2=OA2,(50-x)2+402=502,解得x=1,即水深CD约为为1故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.13、y=-(x-1)1+1【分析】利用顶点式可设抛物线解析式为y=a(x-1)1+1,然后根据a的作用确定a
17、的值即可【详解】解:设抛物线解析式为y=a(x-1)1+1,抛物线y=a y=-(x-1)1+11+1的开口向下,可令a=-1,抛物线解析式y=-(x-1)1+1故答案为y=-(x-1)1+1【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式14、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得18,根据,且2ab,可求OP的最小值【详解】解:设点P(a,b)点P在曲线y上,180,2ab,且2ab,
18、2ab31,OP最小值为1【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用2ab是本题的关键15、20个【解析】通过大量重复摸球试验后发现,摸到红球的频率是0.2,口袋中有5个红球,假设有x个白球,=0.2,解得:x=20,口袋中有白球约有20个故答案为20个16、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可【详解】解:ABC与ABC是位似图形,位似比是1:2,ABCABC,相似比是1:2,ABC与ABC的面积比是1:4,又ABC的面积是3,ABC的面积是1,故答案为1【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式
19、,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键17、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得AFECFB,再根据相似三角形的性质得到BFC的面积,进而得到AFB的面积,即可得ABC的面积,再根据平行四边形的性质即可得解.【详解】解:AE:ED1:2,AE:AD1:3,AD=BC,AE:BC1:3,ADBC,AFECFB,SBCF=9,SAFB=3,SACD =SABC = SBCF+SAFB=12,S四边形CDEFSACDSAEF121=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.
20、18、(1,3)【分析】首先根据直线AB求出点A和点B的坐标,结合旋转的性质可知点B的横坐标等于OA与OB的长度之和,而纵坐标等于OA的长,进而得出B的坐标【详解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,A(3,0),B(0,4)由旋转可得AOBAOB,OAO=90,BOA=90,OA=OA,OB=OB,OBx轴,点B的纵坐标为OA长,即为3;横坐标为OA+OB=OA+OB=3+4=1故点B的坐标是(1,3),故答案为:(1,3)【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键三、解答题(共66分)1
21、9、 【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P= 考点:列表法与树状图法20、x=3或1【分析】移项,因式分解得到,再求解【详解】解:,x-3=0或x-1=0,x=3或1【点睛】本题考查了一元二次方程,解题的关键是根据方程的形式选择因式分解法21、(1);(1)存在,理由见解析;,【分析】(1)利用待定系数法求出A,B,C的坐标,如图1中,作PQy轴交BC于Q,设P,则Q,构建二次函数确定点P的坐标,作P关于y轴的对称点P1(-2,6),作P关于x轴的对称点P1(2,-6),
22、的周长最小,其周长等于线段的长,由此即可解决问题(1)首先求出平移后的抛物线的解析式,确定点H,点C的坐标,分三种情形,当OC=CS时,可得菱形OCS1K1,菱形OCS1K1当OC=OS时,可得菱形OCK3S3,菱形OCK2S2当OC是菱形的对角线时,分别求解即可解决问题【详解】解:(1)如图,过点作轴平行线,交线段于点, 设,=-(m1-2)1+2,m=2时,PBC的面积最大,此时P(2,6) 作点关于轴的对称点,点关于轴的对称点,连接交轴、轴分别为,此时的周长最小,其周长等于线段的长;,. (1)如图,E(0,-2),平移后的抛物线经过E,B,抛物线的解析式为y=-x1+bx-2,把B(8
23、,0)代入得到b=2,平移后的抛物线的解析式为y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,H(1,0),CHB绕点H顺时针旋转90至CHB,C(6,1),当OC=CS时,可得菱形OCS1K1,菱形OCS1K1,OC=CS=1,可得S1(5,1-),S1(5,1+),点C向左平移一个单位,向下平移得到S1,点O向左平移一个单位,向下平移个单位得到K1,K1(-1,-),同法可得K1(-1,),当OC=OS时,可得菱形OCK3S3,菱形OCK2S2,同法可得K3(11,1-),K2(11,1+),当OC是菱形的对角线时,设S5(5,m),则有51+m1=11+(1-m)1
24、,解得m=-5,S5(5,-5),点O向右平移5个单位,向下平移5个单位得到S5,C向上平移5个单位,向左平移5个单位得到K5,K5(1,7),综上所述,满足条件的点K的坐标为(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7)【点睛】本题属于二次函数综合题,考查了二次函数的性质,平移变换,翻折变换,菱形的判定和性质,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.22、(1)yx22x1(2)M(1,2)(1 P(1,4)【解析】分析:(1)根据抛物线的对称轴可求出B点的坐标,进而可用待定系数法求出抛物线的解析式; (2)由于A、B
25、关于抛物线的对称轴直线对称,若连接BC,那么BC与直线x=1的交点即为所求的点M;可先求出直线BC的解析式,联立抛物线对称轴方程即可求得M点的坐标; (1)若PCB=90,根据BCO为等腰直角三角形,可推出CDP为等腰直角三角形,根据线段长度求P点坐标详解:(1)抛物线的对称轴为x=1,且A(1,0),B(1,0); 可设抛物线的解析式为y=a(x+1)(x1),由于抛物线经过C(0,1),则有:a(0+1)(01)=1,a=1,y=(x+1)(x1)=x22x1; (2)由于A、B关于抛物线的对称轴直线x=1对称,那么M点为直线BC与x=1的交点; 由于直线BC经过C(0,1),可设其解析式
26、为y=kx1,则有:1k1=0,k=1; 直线BC的解析式为y=x1; 当x=1时,y=x1=2,即M(1,2); (1)设经过C点且与直线BC垂直的直线为直线l,作PDy轴,垂足为D; OB=OC=1,CD=DP=1,OD=OC+CD=4,P(1,4) 点睛:本题考查了二次函数解析式的确定、轴对称的性质以及特殊三角形的性质等知识,难度适中23、(1)(2)P点坐标(5,),Q点坐标(3,)(3)M点的坐标为(,),(3,1)【解析】试题分析:(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案试题解析:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=4,即A(4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为;(2)PQ=2AO=8,又PQAO,即P、Q关于对称轴x=1对称,PQ=8,14=5,当x=5时,y=(5)2(5)+4=,即P(5,);1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年计算机基础试题及答案
- 2025年五金产品购销合同书
- 权威解读商务礼仪规范试题及答案
- 2024年监理工程师考试整体回顾试题及答案
- 2024年银行从业资格考试听力技巧分享试题及答案
- 2024数据分析师考试预测模型试题及答案
- 2024年考试的复习节奏把握试题及答案
- 2025海鲜产品经纪人合同
- 消费趋势对物流服务的影响试题及答案
- 2025授权编制合同样本
- 建筑施工人员的职业道德培训计划
- 《养成学习习惯》ppt课件完整版
- 年产10万吨聚氯乙烯生产工艺设计毕业设计
- 高中18岁成人仪式主题活动设计
- 《珠穆琅玛峰》课件
- 代码生成器的需求分析报告
- 药学概论(全套课件355P)
- 2023年-2024年电子物证专业考试复习题库(含答案)
- 公司与公司签订劳务合同范本
- 信息资源管理(马费成-第三版)复习重点
- 焊接工艺评定报告PQR115
评论
0/150
提交评论